QUIZ \#3 - MATH 435

MARCH 12TH, 2012

1. Consider the following elements of S_{4} :

- $\sigma=(123)$
- $\tau=(12)(34)$

Compute $\sigma \tau \sigma^{-1}$ and also compute $\tau \sigma \tau^{-1}$ (by compute, we mean disjoint cycle form, or as a cycle). What do you notice about the shape of the outputs? (2 points)

Solution:

$$
\begin{gathered}
\sigma \tau \sigma^{-1}=(123)(12)(34)(321)=(14)(23) \\
\tau \sigma \tau^{-1}=(12)(34)(123)(43)(21)=(142)
\end{gathered}
$$

I notice that $\sigma \tau \sigma^{-1}$ has the same shape as τ and $\tau \sigma \tau^{-1}$ has the same shape as σ.
2. State the class equation, but do NOT prove it. (1 point)

Solution:

$$
|G|=|Z(G)|+\sum_{\substack{x \in G \\\left|\operatorname{Orb}_{G}(x)\right| \geq 2}}|G| /\left|\operatorname{Stab}_{G}(x)\right|
$$

where the Orbit of x is under G^{\prime} s action on itself by conjugation.
3. Prove the orbit stabilizer theorem. In other words, suppose that G is a finite group acting on a set S. Show that for any $x \in S$ that

$$
\begin{equation*}
|G|=\left|\operatorname{Orb}_{G}(x)\right| \cdot\left|\operatorname{Stab}_{G}(x)\right| \tag{2points}
\end{equation*}
$$

Solution:

We already know that

$$
|G|=\left(\# \text { of cosets of } \operatorname{Stab}_{G}(x)\right) \cdot\left|\operatorname{Stab}_{G}(x)\right|
$$

by Lagrange's theorem. Therefore it is sufficient to prove that

$$
\left(\# \text { of cosets of } \operatorname{Stab}_{G}(x)\right)=\left|\operatorname{Orb}_{G}(x)\right|
$$

We will give a bijection between these two sets which will accomplish this. Define a function

$$
\Phi:\left\{\text { left cosets of } \operatorname{Stab}_{G}(x)\right\} \rightarrow \operatorname{Orb}_{G}(x)
$$

by the rule $\Phi\left(a \operatorname{Stab}_{G}(x)\right)=a . x$.
For simplicity, we write $H=\operatorname{Stab}_{G}(x)$ and so our Φ becomes $\Phi(a H)=a . x$.
We need to show that Φ is well defined, surjective, and injective. Note it is NOT a homomorphism since $\operatorname{Orb}_{G}(x)$ is almost certainly not a group.

We first show that Φ is well defined. So suppose that $a H=b H$. We need to show that

$$
\Phi(a H)=a \cdot x=b \cdot x=\Phi(b H)
$$

Since $a H=b H$, we know that $a \in b H$ so that $a=b h$ for some $h \in H=\operatorname{Stab}_{G}(x)$. Note that $h . x=x$ by our choice of h. Then

$$
a \cdot x=(b h) \cdot x=b \cdot(h \cdot x)=b \cdot x
$$

which proves that Φ is well defined.
Now we prove that Φ is surjective. Suppose that $y=g \cdot x \in \operatorname{Orb}_{G}(x)$. Then $\Phi(g H)=g \cdot x=y$ and we conclude that Φ is surjective.

Finally, we prove that Φ is injective. Suppose that $\Phi(a H)=\Phi(b H)$. Thus $a \cdot x=b \cdot x$ and so

$$
x=e \cdot x=\left(a^{-1} a\right) \cdot x=a^{-1} \cdot(a \cdot x)=a^{-1} \cdot(b \cdot x)=\left(a^{-1} b\right) \cdot x
$$

Thus $a^{-1} b \in \operatorname{Stab}_{G}(x)=H$ by definition. Therefore $a^{-1} b H=H$ and so $b H=a H$ which proves that Φ is injective as desired.

