QUIZ \#2 - MATH 435

FEBRUARY 15TH, 2012

1. Consider the group $U(9)$ (the group of positive integers less than and relatively prime to 9 under multiplication $\bmod 9)$ and the cyclic subgroup $H=\langle 8\rangle$.
(a) Explain why H is a normal subgroup, write down the elements of H and write down all of the distinct cosets of H. (2 points)

Solutions: $H=\{1,8\}$. This is a normal subgroup because $U(9)$ is Abelian. Finally, the distinct cosets are $1 H=8 H=\{1,8\}, 2 H=7 H=\{2,7\}$ and $4 H=5 H=\{4,5\}$.
(b) Write down the multiplication table for the group $U(9) / H$. (3 points)

Solutions:

Here's one way to write it.

	$\{1,8\}$	$\{2,7\}$	$\{4,5\}$
$\{1,8\}$	$\{1,8\}$	$\{2,7\}$	$\{4,5\}$
$\{2,7\}$	$\{2,7\}$	$\{4,5\}$	$\{1,8\}$
$\{4,5\}$	$\{4,5\}$	$\{1,8\}$	$\{2,7\}$

Alternately, you can write it as:

	1 H	2 H	4 H
1 H	1 H	2 H	4 H
2 H	2 H	4 H	1 H
4 H	4 H	1 H	2 H

2. Suppose that $\phi: A \rightarrow B$ is a group homomorphism and that the kernel of ϕ is $\left\{e_{A}\right\}$. Prove that ϕ is injective (2 points).

Solutions: Suppose that $a, b \in A$ and that $\phi(a)=\phi(b)$. We want to show that $a=b$, which will prove that ϕ is injective. Since $\phi(a)=\phi(b)$, we see that

$$
e_{B}=\phi(a) \phi(b)^{-1}=\phi(a) \phi\left(b^{-1}\right)=\phi\left(a b^{-1}\right) .
$$

Thus $a b^{-1} \in \operatorname{ker} \phi=\left\{e_{A}\right\}$, and so $a b^{-1}=e_{A}$. But the $a=a b^{-1} b=e_{A} b=b$ which proves that ϕ is injective.

