
HOMEWORK #9 – MATH 435

SOLUTIONS

Chapter 4, Section 6: #2 Prove that f(x) = x3 + 3x+ 2 is irreducible in Q[x].

Solution: By Gauss’ Lemma, it is sufficient to show that this is irreducible in Z[x]. Now, note
that f(x) is irreducible if and only if f(x+1) is irreducible. But f(x+1) = (x+1)3 +3(x+1)+2 =
x3 + 3x2 + 6x+ 6. But this is irreducible by Eisenstein’s criterion.

Chapter 4, Section 6: #3 Show that there are infinitely many integers a such that x7 + 15x2−
30x+ a is irreducible.

Solution: Set a = 5p where p is any prime 6= 5. There are infinitely many such a, and the
polynomial is irreducible for all such a by Eisenstein’s criterions.

Chapter 4, Section 6: #11 Let ϕ be an automorphism of F [x] such that ϕ(a) = a for all
a ∈ F ⊆ F [x]. Prove that there exists 0 6= b, c ∈ F such that ϕ(f(x)) = f(bx + c) for every
f(x) ∈ F [x].

Solution: Let g(x) = ϕ(x). Then it is easy to see that ϕ(f(x)) = f(g(x)) for all f(x) ∈ F [x].
Indeed, this follows immediately from the fact that ϕ is a ring homomorphism.

Suppose now that deg g(x) ≥ 2, then degϕ(f(x)) = deg(f(g(x))) = (deg f)(deg g). Thus
deg(f(g(x))) 6= 1 no matter what f I pick. It follows that ϕ is not surjective because there is
no f(x) such that ϕ(f(x)) = x, since the latter side has degree 1. But then ϕ is not an isomor-
phism either.

Finally suppose that deg g(x) = 0. But then degϕ(f(x)) = deg(f(g(x))) = 0 for all f ∈ F [x].
But again, this implies that ϕ is not surjective and not an automorphism.

Thus deg g(x) = 1 by process of elimination. Therefore g(x) = bx+ c where b 6= 0 and b, c ∈ F .
Thus ϕ(f(x)) = f(bx+ c) as desired.

Chapter 5, Section 1: #9(b) Let F be a field of characteristic p > 0 and let ϕ : F → F be
defined by ϕ(a) = ap. In part (a), it was shown that ϕ is an injective ring homomorphism from F
to itself. Now we have to give an example of a field F such that ϕ is not surjective.

Solution: Let R = Zmodp[x] and suppose that F is the field of fractions of R as in Chapter 4,
Section 7. In other words F = {f/g | f, g ∈ R, g 6= 0}. We notice that ϕ(λ) = λ for every λ ∈ Zmodp

by Fermat’s little theorem.
It follows that that ϕ(f(x)/g(x)) = f(xp)/g(xp) since ϕ is a ring homomorphism. In particular,

every element has only pth powers of x in it. But then the function x/1 ∈ F is not of this form,
and can’t be written in the form f(xp)/g(xp). Therefore ϕ is not surjective.

Chapter 5, Section 1: #10 If F is a finite field, show that ϕ from 9. is surjective.

Solution: ϕ : F → F is an injective map between two sets of the same size (actually, the sets
are the same, but this doesn’t matter). Therefore ϕ is bijective and so surjective as well.

Chapter 5, Section 2: #3 If V is a vector space of dimension n over Zmodp, then show that
|V | = pn.
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Solution: Fix a basis v1, . . . , vn for V over Zmodp. Every element w in V can be written
uniquely as a linear combination:

w = a1v1 + · · ·+ anvn
for some ai ∈ V . In particular, there are p choices for a1, p choices for a2, etc. There are thus pn

choices in all. This completes the proof.

Chapter 5, Section 2: #6(a) Suppose that W ⊆ V are vector spaces over F with V finite
dimensional. Prove that dimF (W ) ≤ dimF (V ).

Solution: Suppose not, then there exists a linearly independent set w1, . . . , wk in W with
k > dimF (V ). But wi ∈ W ⊆ V , and so the wi are in V as well, where they are also linearly
independent. This is a contradiction to Theorem 5.2.6 from the text.

Chapter 5, Section 3: #1(a) Show that
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It follows that
a4 − 10a2 = 49 + 20
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and so a is a root of f(x) = x4 − 10x2 + 1 which proves that a is algebraic over Q.

Chapter 5, Section 3: #7 If F ⊆ K is a field extension and a ∈ K is such that a2 is algebraic
over F , then a is also algebraic over F .

Solution: Suppose that f(x) is non-zero polynomial in F [x] such that f(a2) = 0, such an f
exists because a2 is algebraic. Set g(x) = f(x2). Then g(a) = f(a2) = 0 and this completes the
proof.


