## HOMEWORK \#9 - MATH 435

SOLUTIONS

Chapter 4, Section 6: \#2 Prove that $f(x)=x^{3}+3 x+2$ is irreducible in $\mathbb{Q}[x]$.
Solution: By Gauss' Lemma, it is sufficient to show that this is irreducible in $\mathbb{Z}[x]$. Now, note that $f(x)$ is irreducible if and only if $f(x+1)$ is irreducible. But $f(x+1)=(x+1)^{3}+3(x+1)+2=$ $x^{3}+3 x^{2}+6 x+6$. But this is irreducible by Eisenstein's criterion.

Chapter 4, Section 6: \#3 Show that there are infinitely many integers $a$ such that $x^{7}+15 x^{2}-$ $30 x+a$ is irreducible.

Solution: Set $a=5 p$ where $p$ is any prime $\neq 5$. There are infinitely many such $a$, and the polynomial is irreducible for all such $a$ by Eisenstein's criterions.

Chapter 4, Section 6: \#11 Let $\varphi$ be an automorphism of $F[x]$ such that $\varphi(a)=a$ for all $a \in F \subseteq F[x]$. Prove that there exists $0 \neq b, c \in F$ such that $\varphi(f(x))=f(b x+c)$ for every $f(x) \in F[x]$.

Solution: Let $g(x)=\varphi(x)$. Then it is easy to see that $\varphi(f(x))=f(g(x))$ for all $f(x) \in F[x]$. Indeed, this follows immediately from the fact that $\varphi$ is a ring homomorphism.

Suppose now that $\operatorname{deg} g(x) \geq 2$, then $\operatorname{deg} \varphi(f(x))=\operatorname{deg}(f(g(x)))=(\operatorname{deg} f)(\operatorname{deg} g)$. Thus $\operatorname{deg}(f(g(x))) \neq 1$ no matter what $f$ I pick. It follows that $\varphi$ is not surjective because there is no $f(x)$ such that $\varphi(f(x))=x$, since the latter side has degree 1 . But then $\varphi$ is not an isomorphism either.

Finally suppose that $\operatorname{deg} g(x)=0$. But then $\operatorname{deg} \varphi(f(x))=\operatorname{deg}(f(g(x)))=0$ for all $f \in F[x]$. But again, this implies that $\varphi$ is not surjective and not an automorphism.

Thus $\operatorname{deg} g(x)=1$ by process of elimination. Therefore $g(x)=b x+c$ where $b \neq 0$ and $b, c \in F$. Thus $\varphi(f(x))=f(b x+c)$ as desired.

Chapter 5, Section 1: $\# \mathbf{9 ( b )}$ Let $F$ be a field of characteristic $p>0$ and let $\varphi: F \rightarrow F$ be defined by $\varphi(a)=a^{p}$. In part (a), it was shown that $\varphi$ is an injective ring homomorphism from $F$ to itself. Now we have to give an example of a field $F$ such that $\varphi$ is not surjective.

Solution: Let $R=\mathbb{Z}_{\operatorname{modp}}[x]$ and suppose that $F$ is the field of fractions of $R$ as in Chapter 4, Section 7. In other words $F=\{f / g \mid f, g \in R, g \neq 0\}$. We notice that $\varphi(\lambda)=\lambda$ for every $\lambda \in \mathbb{Z}_{\bmod p}$ by Fermat's little theorem.

It follows that that $\varphi(f(x) / g(x))=f\left(x^{p}\right) / g\left(x^{p}\right)$ since $\varphi$ is a ring homomorphism. In particular, every element has only $p$ th powers of $x$ in it. But then the function $x / 1 \in F$ is not of this form, and can't be written in the form $f\left(x^{p}\right) / g\left(x^{p}\right)$. Therefore $\varphi$ is not surjective.

Chapter 5, Section 1: \#10 If $F$ is a finite field, show that $\varphi$ from 9. is surjective.
Solution: $\quad \varphi: F \rightarrow F$ is an injective map between two sets of the same size (actually, the sets are the same, but this doesn't matter). Therefore $\varphi$ is bijective and so surjective as well.

Chapter 5, Section 2: $\# 3$ If $V$ is a vector space of dimension $n$ over $\mathbb{Z}_{\bmod p}$, then show that $|V|=p^{n}$.

Solution: Fix a basis $v_{1}, \ldots, v_{n}$ for $V$ over $\mathbb{Z}_{\bmod p}$. Every element $w$ in $V$ can be written uniquely as a linear combination:

$$
w=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for some $a_{i} \in V$. In particular, there are $p$ choices for $a_{1}, p$ choices for $a_{2}$, etc. There are thus $p^{n}$ choices in all. This completes the proof.

Chapter 5, Section 2: $\# \mathbf{6 ( a )}$ Suppose that $W \subseteq V$ are vector spaces over $F$ with $V$ finite dimensional. Prove that $\operatorname{dim}_{F}(W) \leq \operatorname{dim}_{F}(V)$.

Solution: Suppose not, then there exists a linearly independent set $w_{1}, \ldots, w_{k}$ in $W$ with $k>\operatorname{dim}_{F}(V)$. But $w_{i} \in W \subseteq V$, and so the $w_{i}$ are in $V$ as well, where they are also linearly independent. This is a contradiction to Theorem 5.2.6 from the text.

Chapter 5, Section 3: $\# \mathbf{1 ( a )}$ Show that $\sqrt{2}+\sqrt{3}$ is algebraic over $\mathbb{Q}$.
Solution: Set $a=\sqrt{2}+\sqrt{3}$. Then

$$
a^{4}=\sqrt{2}^{4}+4 \sqrt{2}^{3} \sqrt{3}+6 \sqrt{2}^{2} \sqrt{3}^{2}+4 \sqrt{2}_{2}^{3}+\sqrt{3}^{4}=4+8 \sqrt{6}+36+12 \sqrt{6}+9=49+20 \sqrt{6}
$$

and

$$
a^{2}=\sqrt{2}^{2}+2 \sqrt{2} \sqrt{3}+\sqrt{3}^{2}=5+2 \sqrt{6} .
$$

It follows that

$$
a^{4}-10 a^{2}=49+20 \sqrt{6}-50-20 \sqrt{6}=-1
$$

and so $a$ is a root of $f(x)=x^{4}-10 x^{2}+1$ which proves that $a$ is algebraic over $\mathbb{Q}$.
Chapter 5, Section 3: \#7 If $F \subseteq K$ is a field extension and $a \in K$ is such that $a^{2}$ is algebraic over $F$, then $a$ is also algebraic over $F$.

Solution: Suppose that $f(x)$ is non-zero polynomial in $F[x]$ such that $f\left(a^{2}\right)=0$, such an $f$ exists because $a^{2}$ is algebraic. Set $g(x)=f\left(x^{2}\right)$. Then $g(a)=f\left(a^{2}\right)=0$ and this completes the proof.

