
HOMEWORK #8 – MATH 435

SOLUTIONS

Chapter 4, Section 5: #1 If F is a field, show that the only invertible elements in F [x] are the
non-zero elements of F .

Solution: Certainly the elements of F are invertible. Conversely, suppose that g ∈ F [x] is
invertible but is not in F . Thus deg g ≥ 1. Suppose gh = 1, then since (deg g)+(deg h) = deg 1 = 0,
we have that deg h ≤ −1, which is impossible.

Chapter 4, Section 5: #5 In problem # 3, let I = {af + bg | f, g ∈ Q[x]}. Find d such that
I = 〈d〉.

Solution: Setting d = gcd(a, b) will work.

(a) x3 − 6x + 7 and x + 4. The only way they have a non-zero gcd is if −4 is a root of both
polynomials. But (−4)3 − 6(−4) + 7 = −64 + 24 + 7 6= 0. Thus we can take d = 1.

(b) x2−1 and 2x7−4x5+2. The only way they can have a non-zero gcd is if either of ±1 is a root
of the second polynomial. Now 2(1)7−4(1)5+2 = 0 but 2(−1)7−4(−1)5+2 = −2+4+2 6= 0.
Thus d = x− (1) will work.

(c) 3x2 + 1 and x6 + x4 + x+ 1. The polynomial on the left is irreducible since it doesn’t have
any roots in Q. By reduction mod 3, the polynomial on the right is also irreducible since
16 + 14 + 1 + 1 = 1 mod 3 and 26 + 24 + 2 + 1 = 64 + 16 + 2 + 1 = 83 = 2 mod 3. Thus
they have no terms in common.

(d) x3 − 1 and x7 − x4 + x3 − 1. The left term factors as x3 − 1 = (x− 1)(x2 + x+ 1) and the
second term is irreducible. We note immediately that 1 is a root of b = x7 − x4 + x3 − 1
and so the only question is whether x2 + x + 1 also divides b. By doing polynomial long
division we see that this is indeed the case. x7 − x4 + x3 − 1 = (x3 − 1)(x4 + 1) and so the
gcd is x3 − 1.

Chapter 4, Section 10: #35 Show that the following polynomials are irreducible over the field
F indicated.

Solution:

(a) x2 + 7 over F = R. It is degree 2 and has no roots.
(b) x3 − 3x+ 3 over F = Q. Use Eisenstein.
(c) x2 + x+ 1 over F = Zmod2. It is degree 2 and has no roots.
(d) x2 + 1 over F = Zmod19. One can check all potential roots and see that there are none. Or

one can use basic facts about when −1 has a square root.
(e) x3 − 9 over F = Zmod13. Again, brute force will do the trick.
(f) x4 + 2x2 + 2 over F = Q. Use Eisenstein.

Chapter 4, Section 1: #12 If F ⊆ K are two fields and f, g ∈ F [x] are relatively prime, show
they are relatively prime in K[x].

Solution: There exists s, t ∈ F [x] ⊆ K[x] such that sf + tg = 1 since f, g are relatively prime
in F . But s, t also have coefficients in K, so f and g are relatively prime in K[x] as well.

Chapter 4, Section 1: #13
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Solution: Show that R[x]/〈x2 + 1〉 ' C. We have a surjective homomorphism φ : R[x] → C
which sends x to i (and sends f(x) to f(i)). Note that x2 + 1 is in the kernel K = 〈d〉, which is
principal since R[x] is a PID. Thus d divides x2 + 1 so it is either equal to it, or equal to 1. d = 1
would imply that φ is the zero map as everything would be in the kernel, but this is not the case.
Thus d = x2 + 1 and the proof is complete.

Chapter 4, Section 1: #15 Let F = Zmodp be a field where p is prime. Suppose that q ∈ F [x]
is irreducible of degree n. Prove that F [x]/〈q〉 is a field with at most pn elements.

Solution: Set J = 〈q〉. Consider a+ J ∈ F [x]/J . We can write a = qd+ r for some d ∈ F [x]
and r with 0 ≤ deg r < deg q. Thus a + J = qd + r + J = r + J . In particular, every element of
F [x]/J can be expressed as

(an−1x
n−1 + · · ·+ a1x

1 + a0) + J

for some ai ∈ F . But there are only qn possible choices. This completes the proof.

Chapter 4, Section 1: #25 If p is prime, show that xp−1 + · · ·+ x+ 1 is irreducible in Q[x].

Solution: Now, (xp − 1)/(x− 1) = xp−1 + · · ·+ x+ 1. Thus

(x+ 1)p−1 + · · ·+ (x+ 1) + 1
= ((x+ 1)p − 1)/(x+ 1− 1)
= (xp +

(
p
1

)
xp−1 + · · ·+

(
p

p−1

)
x1 + 1− 1)/x

= xp−1 +
(
p
1

)
xp−2 + · · ·+

(
p

p−2

)
x1 + p

But this is irreducible by Eisenstein’s criterion and so the proof is complete.


