HOMEWORK \#7 - MATH 435

SOLUTIONS

Chapter 4, Section 3: \#1 If R is a commutative ring and $a \in R$, let $L(a)=\{x \in R \mid x a=0\}$. Prove that $L(a)$ is an ideal of R.

Solution: Indeed, we need to show that $L(a)$ is a subgroup under addition, and closed under multiplication by elements of R. First suppose that $x, y \in L(a)$. Then $x a=0$ and $y a=0$ so that $(x+y) a=x a+y a=0+0=0$ which shows that $L(a)$ is closed under addition. Notice that $0 a=0$ so that $0 \in L(a)$ and finally note that if $x \in L(a)$, then $0=-0=-(x a)=(-x) a$ which proves that $-x \in L(a)$ as well. We have shown that $L(a)$ is a subgroup under addition.

Now we show it is closed under multiplication from elements of R. Indeed, to show this, suppose that $r \in R$ and $x \in L(a)$. Then $(r x) a=r(x a)=r 0=0$ which shows that $r x=x r \in L(a)$ and so we have shown that $L(a)$ is an ideal as desired.

Chapter 4, Section 3: \#5 If I is an ideal of R and A is a subring of R, show that $I \cap A$ is an ideal of A.

Solution: We already know that the intersection of two subgroups is again a subgroup, so $I \cap A$ is already a subgroup of A under addition. Now we show that $I \cap A$ is closed under multiplication from arbitrary elements of A. Pick $a \in A$ and $x \in I \cap A$. Then $x \in I$ and $x \in A$. Thus $a x \in I$ (since I is an ideal of R and $a \in A \subseteq R$) and $a x \in A$ (since $a, x \in A$ and A is closed under multiplication since it is a ring). Thus $I \cap A$ is a ring as desired.

Of course, $I \cap A$ need not be an ideal of R (can you find an example?).
Chapter 4, Section 3: \#18 Show that $R \oplus S$ is a ring and that the subrings $\{(r, 0) \mid r \in R\}$ and $\{(0, s) \mid s \in S\}$ are ideals of $R \oplus S$ isomorphic (as rings) to R and S respectively.

Solution: First we show that $R \oplus S$ is a ring. Certainly it is closed under multiplication and addition (componentwise). Now we have other things to check.

Associativity of + :

$$
\begin{aligned}
& (r, s)+\left(\left(r^{\prime}, s^{\prime}\right)+\left(r^{\prime \prime}, s^{\prime \prime}\right)\right)=(r, s)+\left(r^{\prime}+r^{\prime \prime}, s^{\prime}+s^{\prime \prime}\right)=\left(r+\left(r^{\prime}+r^{\prime \prime}\right), s+\left(s^{\prime}+s^{\prime \prime}\right)\right) \\
= & \left(\left(r+r^{\prime}\right)+r^{\prime \prime},\left(s+s^{\prime}\right)+s^{\prime \prime}\right)=\left(r+r^{\prime}, s+s^{\prime}\right)+\left(r^{\prime \prime}, s^{\prime \prime}\right)=\left((r, s)+\left(r^{\prime}, s^{\prime}\right)\right)+\left(r^{\prime \prime}, s^{\prime \prime}\right) .
\end{aligned}
$$

Associativity of :

$$
\begin{aligned}
& (r, s)\left(\left(r^{\prime}, s^{\prime}\right)\left(r^{\prime \prime}, s^{\prime \prime}\right)\right)=(r, s)\left(r^{\prime} r^{\prime \prime}, s^{\prime} s^{\prime \prime}\right)=\left(r\left(r^{\prime} r^{\prime \prime}\right), s\left(s^{\prime} s^{\prime \prime}\right)\right) \\
= & \left(\left(r r^{\prime}\right) r^{\prime \prime},\left(s s^{\prime}\right) s^{\prime \prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)\left(r^{\prime \prime}, s^{\prime \prime}\right)=\left((r, s)\left(r^{\prime}, s^{\prime}\right)\right)\left(r^{\prime \prime}, s^{\prime \prime}\right) .
\end{aligned}
$$

Additive identity:

$$
(0,0)+(r, s)=(0+r, 0+s)=(r, s)=(r+0, s+0)=(r, s)+(0,0)
$$

Additive inverses: Given $(r, s) \in R \oplus S$, then $(r, s)+(-r,-s)=(r-r, s-s)=(0,0)=$ $(-r+r,-s+s)=(-r,-s)+(r, s)$.

Distributive property:

$$
\begin{aligned}
&(r, s)\left(\left(r^{\prime}, s^{\prime}\right)+\left(r^{\prime \prime}, s^{\prime \prime}\right)\right)=(r, s)\left(r^{\prime}+r^{\prime \prime}, s^{\prime}+s^{\prime \prime}\right)=\left(r\left(r^{\prime}+r^{\prime \prime}\right), s\left(s^{\prime}+s^{\prime \prime}\right)\right) \\
&=\left(r r^{\prime}+r r^{\prime \prime}, s s^{\prime}+s s^{\prime \prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)+\left(r r^{\prime \prime}, s s^{\prime \prime}\right)=(r, s)\left(r^{\prime}, s^{\prime}\right)+(r, s)\left(r^{\prime \prime}, s^{\prime \prime}\right)
\end{aligned}
$$

We have now shown that $R \oplus S$ is a ring.
Now $\{(r, 0) \mid r \in R\}$ is easily seen to be a subring. Indeed, it's already a subgroup under addition and also note that $(r, 0)(a, b)=(r a, 0 b)=(r a, 0)$ and likewise $(a, b)(r, 0)=(a r, b 0)=(a r, 0)$ both of which are in $\{(r, 0) \mid r \in R\}$. Thus it is an ideal, and not just a subring. Likewise $\{(0, s) \mid s \in S\}$ is a subring.

Consider the map $\phi: R \rightarrow\{(r, 0) \mid r \in R\}$ defined by the rule $\phi(r)=(r, 0)$. This is certainly bijective. Of course

$$
\phi\left(r+r^{\prime}\right)=\left(r+r^{\prime}, 0\right)=(r, 0)+\left(r^{\prime}, 0\right)=\phi(r)+\phi\left(r^{\prime}\right)
$$

and

$$
\phi\left(r r^{\prime}\right)=\left(r r^{\prime}, 0\right)=(r, 0)\left(r^{\prime}, 0\right)=\phi(r) \phi\left(r^{\prime}\right) .
$$

which shows that ϕ is a homomorphism. Thus ϕ is an isomorphism and R is isomorphic with $\{(r, 0) \mid r \in R\}$.

Similarly, S is isomorphic with $\{(0, s) \mid s \in S\}$.
Chapter 4, Section 3: \#20 If I, J are ideals of R, let $R_{1}=R / I$ and $R_{2}=R / J$. Show that $\phi: R \rightarrow R_{1} \oplus R_{2}$ defined by $\phi(r)=(r+I, r+J)$ is a homomorphism of R into $R_{1} \oplus R_{2}$ such that $\operatorname{ker} \phi=I \cap J$.

Solution: First we show it is a homomorphism:

$$
\begin{array}{r}
\phi\left(r r^{\prime}\right)=\left(\left(r r^{\prime}\right)+I,\left(r r^{\prime}\right)+J\right)=(r+I, r+J)\left(r^{\prime}+I, r^{\prime}+J\right)=\phi(r) \phi\left(r^{\prime}\right) \\
\phi\left(r+r^{\prime}\right)=\left(\left(r+r^{\prime}\right)+I,\left(r+r^{\prime}\right)+J\right)=(r+I, r+J)+\left(r^{\prime}+I, r^{\prime}+J\right)=\phi(r)+\phi\left(r^{\prime}\right)
\end{array}
$$

Note that ker $\phi=\{r \in R \mid(r+I, r+J)=(0+I, 0+J)\}=\{r \in R \mid r \in I, r \in J\}=I \cap J$ as desired.

Chapter 4, Section 3: \#22 Let $m, n \in \mathbb{Z}$ be two relatively prime integers, and set $I_{m}=m \mathbb{Z}$ and $I_{n}=n \mathbb{Z}$.
(a) What is $I_{m} \cap I_{n}$?
(b) Use the result of $\# 20$ to show that there is an injective homomorphism from $\mathbb{Z} / I_{m n}$ to $\mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$.

Solution: (a) Note that $I_{m} \cap I_{n}$ is the set of all numbers that are multiples of both m and n. Since m and n are relatively prime, this is the same as the integers which are multiples of $m n$ as desired.
(b) It is sufficient to show that there is an isomorphism between $\mathbb{Z} / I_{m n}$ and a subring of $\mathbb{Z} / I_{m} \oplus$ \mathbb{Z} / I_{n}. We first consider the homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$ from $\# 20$. Notice that the image of this map is a subring $S \subseteq \mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$. We thus have a surjective homomorphism $\psi: \mathbb{Z} \rightarrow S$ (the same map as ϕ, but just with different codomains).

Now, the kernel of ψ is the same as the kernel of ϕ (since they are really the same map in some level). Now, $\operatorname{ker} \psi=\operatorname{ker} \phi=I_{m} \cap I_{n}=I_{m n}$ by (a). Thus by the first homomorphism theorem, $\mathbb{Z} / I_{m n}=\mathbb{Z} / \operatorname{ker} \psi \simeq S$, and since S is a subring of $\mathbb{Z} / I_{m} \oplus \mathbb{Z} / I_{n}$ we are done.

Chapter 4, Section 4: \#3,4 In example 3, show that $M=\{x(2+i) \mid x \in R\}$ is a maximal ideal and that $R / M=\mathbb{Z}_{\text {mod5 }}$.

Solution: I'll solve both of these at once. Obviously the second statement implies the first since $\mathbb{Z}_{\text {mod5 }}$ is a field.

First consider an arbitrary element $(a+b i)+M \in R / M$. Notice I can rewrite this as:

$$
\begin{aligned}
& (a+b i)+M \\
= & (a-2 b+2 b+b i)+M \\
= & (a-2 b)+b(2+i)+M \\
= & (a-2 b)+M \\
= & ((a-2 b) \bmod 5)+5 q+M \\
= & ((a-2 b) \bmod 5)+M
\end{aligned}
$$

where the third equality follows because $b(2+i) \in M$, the penultimate equality is simply the division algorithm, and the final equality comes because $5 \in M$.

But this means that every element $(a+b i)+M \in R / M$ can be written as one of

$$
\begin{aligned}
& 0+M \\
& 1+M \\
& 2+M \\
& 3+M \\
& 4+M
\end{aligned}
$$

since those are the only possibilities of an integer modulo 5 . In particular, $R / M=\{0+M, 1+$ $M, 2+M, 3+M, 4+M\}$ but of course, some of those elements might be repeats.

We will now show that that $0+M \neq 1+M$ which at least shows that the first two have no repeats. For a contradiction, suppose they were equal, then $1 \in M$ and so $1+0 i=(a+b i)(2+i)=$ $(2 a-b)+(2 b+a) i$ thus $2 b+a=0$ and $2 a-b=1$. Thus $a=-2 b$ and plugging this in we get $2(-2 b)-b=1$ and so $b=-\frac{1}{5}$ which is not an integer, a contradiction.

Now, certainly for integers $a, b \in\{0,1,2,3,4\}$, we have that

$$
\begin{array}{r}
(a+M)+(b+M)=((a+b) \bmod 5)+5 q+M=((a+b) \bmod 5)+M \\
(a+M)(b+M)=((a b) \bmod 5)+5 q^{\prime}+M=((a b) \bmod 5)+M
\end{array}
$$

where q and q^{\prime} appear in the division algorithm. In particular, it follows we have a natural surjective ring homomorphism $\gamma: \mathbb{Z}_{\text {mod5 }} \rightarrow R / M$ which sends a to $a+M$. But then $|R / M|$ divides 5 by Lagrange's theorem (and the corollary from the first midterm). But R / M has at least 2 elements and so $|R / M|=5$. But then γ is clearly bijective (since it is a surjective map between two sets both of which have 5 elements) and so we have completed the proof.

