
HOMEWORK #7 – MATH 435

SOLUTIONS

Chapter 4, Section 3: #1 If R is a commutative ring and a ∈ R, let L(a) = {x ∈ R |xa = 0}.
Prove that L(a) is an ideal of R.

Solution: Indeed, we need to show that L(a) is a subgroup under addition, and closed under
multiplication by elements of R. First suppose that x, y ∈ L(a). Then xa = 0 and ya = 0 so that
(x+ y)a = xa+ ya = 0 + 0 = 0 which shows that L(a) is closed under addition. Notice that 0a = 0
so that 0 ∈ L(a) and finally note that if x ∈ L(a), then 0 = −0 = −(xa) = (−x)a which proves
that −x ∈ L(a) as well. We have shown that L(a) is a subgroup under addition.

Now we show it is closed under multiplication from elements of R. Indeed, to show this, suppose
that r ∈ R and x ∈ L(a). Then (rx)a = r(xa) = r0 = 0 which shows that rx = xr ∈ L(a) and so
we have shown that L(a) is an ideal as desired.

Chapter 4, Section 3: #5 If I is an ideal of R and A is a subring of R, show that I ∩ A is an
ideal of A.

Solution: We already know that the intersection of two subgroups is again a subgroup, so I∩A
is already a subgroup of A under addition. Now we show that I ∩A is closed under multiplication
from arbitrary elements of A. Pick a ∈ A and x ∈ I∩A. Then x ∈ I and x ∈ A. Thus ax ∈ I (since
I is an ideal of R and a ∈ A ⊆ R) and ax ∈ A (since a, x ∈ A and A is closed under multiplication
since it is a ring). Thus I ∩A is a ring as desired.

Of course, I ∩A need not be an ideal of R (can you find an example?).

Chapter 4, Section 3: #18 Show that R⊕S is a ring and that the subrings {(r, 0) | r ∈ R} and
{(0, s) | s ∈ S} are ideals of R⊕ S isomorphic (as rings) to R and S respectively.

Solution: First we show that R ⊕ S is a ring. Certainly it is closed under multiplication and
addition (componentwise). Now we have other things to check.

Associativity of +:

(r, s) + ((r′, s′) + (r′′, s′′)) = (r, s) + (r′ + r′′, s′ + s′′) = (r + (r′ + r′′), s+ (s′ + s′′))

= ((r + r′) + r′′, (s+ s′) + s′′) = (r + r′, s+ s′) + (r′′, s′′) = ((r, s) + (r′, s′)) + (r′′, s′′).

Associativity of ·:
(r, s)((r′, s′)(r′′, s′′)) = (r, s)(r′r′′, s′s′′) = (r(r′r′′), s(s′s′′))

= ((rr′)r′′, (ss′)s′′) = (rr′, ss′)(r′′, s′′) = ((r, s)(r′, s′))(r′′, s′′).

Additive identity:

(0, 0) + (r, s) = (0 + r, 0 + s) = (r, s) = (r + 0, s+ 0) = (r, s) + (0, 0)

Additive inverses: Given (r, s) ∈ R ⊕ S, then (r, s) + (−r,−s) = (r − r, s − s) = (0, 0) =
(−r + r,−s+ s) = (−r,−s) + (r, s).

Distributive property:

(r, s)((r′, s′) + (r′′, s′′)) = (r, s)(r′ + r′′, s′ + s′′) = (r(r′ + r′′), s(s′ + s′′))

= (rr′ + rr′′, ss′ + ss′′) = (rr′, ss′) + (rr′′, ss′′) = (r, s)(r′, s′) + (r, s)(r′′, s′′)
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We have now shown that R⊕ S is a ring.
Now {(r, 0) | r ∈ R} is easily seen to be a subring. Indeed, it’s already a subgroup under addition

and also note that (r, 0)(a, b) = (ra, 0b) = (ra, 0) and likewise (a, b)(r, 0) = (ar, b0) = (ar, 0) both
of which are in {(r, 0) | r ∈ R}. Thus it is an ideal, and not just a subring. Likewise {(0, s) | s ∈ S}
is a subring.

Consider the map φ : R → {(r, 0) | r ∈ R} defined by the rule φ(r) = (r, 0). This is certainly
bijective. Of course

φ(r + r′) = (r + r′, 0) = (r, 0) + (r′, 0) = φ(r) + φ(r′)

and

φ(rr′) = (rr′, 0) = (r, 0)(r′, 0) = φ(r)φ(r′).

which shows that φ is a homomorphism. Thus φ is an isomorphism and R is isomorphic with
{(r, 0) | r ∈ R}.

Similarly, S is isomorphic with {(0, s) | s ∈ S}.

Chapter 4, Section 3: #20 If I, J are ideals of R, let R1 = R/I and R2 = R/J . Show that
φ : R→ R1 ⊕R2 defined by φ(r) = (r + I, r + J) is a homomorphism of R into R1 ⊕R2 such that
kerφ = I ∩ J .

Solution: First we show it is a homomorphism:

φ(rr′) = ((rr′) + I, (rr′) + J) = (r + I, r + J)(r′ + I, r′ + J) = φ(r)φ(r′)

φ(r + r′) = ((r + r′) + I, (r + r′) + J) = (r + I, r + J) + (r′ + I, r′ + J) = φ(r) + φ(r′)

Note that kerφ = {r ∈ R | (r+I, r+J) = (0+I, 0+J)} = {r ∈ R | r ∈ I, r ∈ J} = I ∩J as desired.

Chapter 4, Section 3: #22 Let m,n ∈ Z be two relatively prime integers, and set Im = mZ
and In = nZ.

(a) What is Im ∩ In?
(b) Use the result of #20 to show that there is an injective homomorphism from Z/Imn to

Z/Im ⊕ Z/In.

Solution: (a) Note that Im ∩ In is the set of all numbers that are multiples of both m and n.
Since m and n are relatively prime, this is the same as the integers which are multiples of mn as
desired.

(b) It is sufficient to show that there is an isomorphism between Z/Imn and a subring of Z/Im⊕
Z/In. We first consider the homomorphism φ : Z→ Z/Im⊕Z/In from #20. Notice that the image
of this map is a subring S ⊆ Z/Im ⊕ Z/In. We thus have a surjective homomorphism ψ : Z → S
(the same map as φ, but just with different codomains).

Now, the kernel of ψ is the same as the kernel of φ (since they are really the same map in some
level). Now, kerψ = kerφ = Im ∩ In = Imn by (a). Thus by the first homomorphism theorem,
Z/Imn = Z/ kerψ ' S, and since S is a subring of Z/Im ⊕ Z/In we are done.

Chapter 4, Section 4: #3,4 In example 3, show that M = {x(2 + i) |x ∈ R} is a maximal ideal
and that R/M = Zmod5.

Solution: I’ll solve both of these at once. Obviously the second statement implies the first
since Zmod5 is a field.
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First consider an arbitrary element (a+ bi) +M ∈ R/M . Notice I can rewrite this as:

(a+ bi) +M
= (a− 2b+ 2b+ bi) +M
= (a− 2b) + b(2 + i) +M
= (a− 2b) +M
=

(
(a− 2b)mod 5

)
+ 5q +M

=
(
(a− 2b)mod 5

)
+M

where the third equality follows because b(2 + i) ∈ M , the penultimate equality is simply the
division algorithm, and the final equality comes because 5 ∈M .

But this means that every element (a+ bi) +M ∈ R/M can be written as one of

0 +M
1 +M
2 +M
3 +M
4 +M

since those are the only possibilities of an integer modulo 5. In particular, R/M = {0 + M, 1 +
M, 2 +M, 3 +M, 4 +M} but of course, some of those elements might be repeats.

We will now show that that 0 + M 6= 1 + M which at least shows that the first two have no
repeats. For a contradiction, suppose they were equal, then 1 ∈M and so 1 + 0i = (a+ bi)(2 + i) =
(2a − b) + (2b + a)i thus 2b + a = 0 and 2a − b = 1. Thus a = −2b and plugging this in we get
2(−2b)− b = 1 and so b = −1

5 which is not an integer, a contradiction.
Now, certainly for integers a, b ∈ {0, 1, 2, 3, 4}, we have that

(a+M) + (b+M) =
(
(a+ b)mod5

)
+ 5q +M =

(
(a+ b)mod5

)
+M

(a+M)(b+M) =
(
(ab)mod5

)
+ 5q′ +M =

(
(ab)mod5

)
+M

where q and q′ appear in the division algorithm. In particular, it follows we have a natural surjective
ring homomorphism γ : Zmod5 → R/M which sends a to a + M . But then |R/M | divides 5 by
Lagrange’s theorem (and the corollary from the first midterm). But R/M has at least 2 elements
and so |R/M | = 5. But then γ is clearly bijective (since it is a surjective map between two sets
both of which have 5 elements) and so we have completed the proof.


