HOMEWORK #7 — MATH 435

SOLUTIONS

Chapter 4, Section 3: #1 If R is a commutative ring and a € R, let L(a) = {z € R|za = 0}.
Prove that L(a) is an ideal of R.

Solution: Indeed, we need to show that L(a) is a subgroup under addition, and closed under
multiplication by elements of R. First suppose that z,y € L(a). Then za = 0 and ya = 0 so that
(r+y)a =za+ya =040 = 0 which shows that L(a) is closed under addition. Notice that Oa = 0
so that 0 € L(a) and finally note that if z € L(a), then 0 = —0 = —(xa) = (—x)a which proves
that —z € L(a) as well. We have shown that L(a) is a subgroup under addition.

Now we show it is closed under multiplication from elements of R. Indeed, to show this, suppose
that r € R and « € L(a). Then (rz)a = r(za) = r0 = 0 which shows that rz = xr € L(a) and so
we have shown that L(a) is an ideal as desired.

Chapter 4, Section 3: #5 If [ is an ideal of R and A is a subring of R, show that I N A is an
ideal of A.

Solution: We already know that the intersection of two subgroups is again a subgroup, so I N A
is already a subgroup of A under addition. Now we show that I N A is closed under multiplication
from arbitrary elements of A. Picka € Aand x € INA. Thenz € [ and x € A. Thus ax € I (since
I is an ideal of R and a € A C R) and ax € A (since a,x € A and A is closed under multiplication
since it is a ring). Thus I N A is a ring as desired.

Of course, I N A need not be an ideal of R (can you find an example?).

Chapter 4, Section 3: #18 Show that R® S is a ring and that the subrings {(r,0) |7 € R} and
{(0,s)|s € S} are ideals of R @ S isomorphic (as rings) to R and S respectively.

Solution: First we show that R @ S is a ring. Certainly it is closed under multiplication and
addition (componentwise). Now we have other things to check.

Associativity of +:
(r,8) + (', 8) + (", 8")) = (ros) + (" 07,6 +67) = (r+ (' +17), 5 + (5 +5))
=((r+r)+7"(s+8)+) = +7,s+)+ (") =((r,s)+ () + (+",5").
Associativity of -:
(r,s)((7', ) (1", s")) = (r,s) (""", 8's") = (r(+'r"), 5(s's"))
= ((rr")r", (s8")s") = (rr', 58" ) (7", s") = ((r, 8)(+', ")) (r", §").
Additive identity:
(0,0)+ (r,s) = (04+7r,04+ ) =(r,s) = (r+0,s+0) = (r,s) + (0,0)
Additive inverses: Given (r,s) € R® S, then (r,s) + (—r,—s) = (r —r,s —s) = (0,0) =

(—=r+r,—s+s)=(-r,—s)+ (r,s).
Distributive property:

(’I”, 8)((7'/,8/) + (T”,S//)) — (T, S)(T/+T//,S/ +8//) — (T(T/ +T//),S(S/+S”))
= (rr' + 1", 58 + 55") = (r1',s8") + (rr",55") = (r,8)(+', 8") + (r,8)(r", ")
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We have now shown that R & S is a ring.

Now {(r,0) | r € R} is easily seen to be a subring. Indeed, it’s already a subgroup under addition
and also note that (r,0)(a,b) = (ra,0b) = (ra,0) and likewise (a, b)(r,0) = (ar,b0) = (ar,0) both
of which are in {(r,0) |7 € R}. Thus it is an ideal, and not just a subring. Likewise {(0,s)|s € S}
is a subring.

Consider the map ¢ : R — {(r,0)|r € R} defined by the rule ¢(r) = (r,0). This is certainly
bijective. Of course

o(r+1') = (r+1",0) = (r,0) + (+',0) = ¢(r) + ¢(r')
and
¢(rr') = (r1",0) = (r,0)(r’", 0) = $(r)(r").

which shows that ¢ is a homomorphism. Thus ¢ is an isomorphism and R is isomorphic with
{(r,0)|r € R}.
Similarly, S is isomorphic with {(0,s)|s € S}.

Chapter 4, Section 3: #20 If I, J are ideals of R, let Ry = R/I and Ry = R/J. Show that
¢: R — Ry @ Ry defined by ¢(r) = (r + I,7 + J) is a homomorphism of R into Ry & Ry such that
ker¢p =1NJ.

Solution: First we show it is a homomorphism:

o(rry= (Y +L,(r"Y+T)=(r+Lr+ )0 + 10" +J) = ¢(r)o(r')
¢r+r)=(r+r)+ Lr+r)+ D)=+ Lr+ D)+ 0 + L +J)=(r) + ¢(r')

Note that ker¢p = {r € R|(r+1I,r+J) = (0+1,0+J)} ={re R|rel,r e J} =1NJ as desired.

Chapter 4, Section 3: #22 Let m,n € Z be two relatively prime integers, and set I,,, = mZ
and I,, = nZ.

(a) What is I, N I,?
(b) Use the result of #20 to show that there is an injective homomorphism from Z/I,, to
Z]IL, ®7Z/]I,.

Solution: (a) Note that I,, N I,, is the set of all numbers that are multiples of both m and n.
Since m and n are relatively prime, this is the same as the integers which are multiples of mn as
desired.

(b) It is sufficient to show that there is an isomorphism between Z/I,,,,, and a subring of Z/I,,, &
Z/I,,. We first consider the homomorphism ¢ : Z — Z/I,, ®Z/I,, from #20. Notice that the image
of this map is a subring S C Z/I,, ® Z/I,,. We thus have a surjective homomorphism v : Z — S
(the same map as ¢, but just with different codomains).

Now, the kernel of 1 is the same as the kernel of ¢ (since they are really the same map in some
level). Now, kery) = ker¢ = I,,, N I, = L,y by (a). Thus by the first homomorphism theorem,
ZImn = 7] keryp ~ S, and since S is a subring of Z/1I,,, ® Z/I,, we are done.

Chapter 4, Section 4: #3,4 In example 3, show that M = {z(2+i) |z € R} is a maximal ideal
and that R/M = Zods-

Solution: I'll solve both of these at once. Obviously the second statement implies the first
since Zmods 18 a field.
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First consider an arbitrary element (a + bi) + M € R/M. Notice I can rewrite this as:

(a+bi)+ M
(@ —2b+2b+bi) + M
= (a—2b)+b2+4i)+M
(@ —2b)+ M

((a — 2b)mod 5) + 5g + M
= ((a—2b)mod 5) + M

where the third equality follows because b(2 + i) € M, the penultimate equality is simply the
division algorithm, and the final equality comes because 5 € M.
But this means that every element (a + bi) + M € R/M can be written as one of

0+ M
1+ M
24+ M
3+ M
4+ M

since those are the only possibilities of an integer modulo 5. In particular, R/M = {0+ M,1 +
M,2+ M,3+ M,4+ M} but of course, some of those elements might be repeats.

We will now show that that 0 + M # 1 + M which at least shows that the first two have no
repeats. For a contradiction, suppose they were equal, then 1 € M and so 1+0i = (a+bi)(2+1) =
(2a — b) 4+ (2b + a)i thus 2b + a = 0 and 2a — b = 1. Thus a = —2b and plugging this in we get
2(—2b) — b =1 and so b = —+ which is not an integer, a contradiction.

Now, certainly for integers a,b € {0,1,2,3,4}, we have that

(a+ M)+ (b+ M) = ((a+b)mod5) + 5g + M = ((a + b)mod5) + M

(a+ M)(b+ M) = ((ab)mod5) + 5¢' + M = ((ab)mod5) + M
where g and ¢’ appear in the division algorithm. In particular, it follows we have a natural surjective
ring homomorphism v : Zyeds — R/M which sends a to a + M. But then |R/M]| divides 5 by
Lagrange’s theorem (and the corollary from the first midterm). But R/M has at least 2 elements

and so |[R/M| = 5. But then ~ is clearly bijective (since it is a surjective map between two sets
both of which have 5 elements) and so we have completed the proof.



