HOMEWORK #6 — MATH 435

DUE MONDAY MARCH 19TH

Chapter 4, Section 1: #35 For R as in Example 10, show that S = {f € R|f is differentiable on (0,1)}
is a subring of R which is not an integral domain.

Solution: First we need to prove that S is a subring. It is certainly closed under addition
and multiplication since sums and products of differentiable functions are differentiable. It also has
the additive identity since the constant function f(z) = 0 is differentiable. Finally, if f € S, then
certainly —f is differentiable also and so —f € S. These are all we have to prove to demonstrate
that S is a subring.

Now, we must prove that S is not an integral domain. Consider the functions defined on the
domain (0,1).

0, z < r<i
Note that f is differentiable since the derivative (from the left) of f at % is 0, and the derivative
from the right is also 2(% — %)1 = 0. Likewise for g. Thus both f,g € S. But then notice that
f-g =0 (since (f-g)(x) = f(z)g(x) and either f(x) = 0 or g(x) = 0 for any = € (0,1). This
completes the proof.
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Chapter 4, Section 2: #2 If R is an integral domain and ab = ac for 0 # a € R and some
b,c € R, show that b = c.

Solution: Note ab = ac implies that ab — ac = 0 and so a(b — ¢) = 0. Thus a = 0 (which is
impossible since we assumed a # 0) or b — ¢ = 0 (which is the only remaining possibility). Thus
b = c and we are done.

Chapter 4, Section 2: #3 If R is a finite integral domain, show that R is a field.

Solution: Our first order of business is to prove that R contains 1. Choose x € R nonzero.
Then 2" = 2™ for some integers n < m (by the pigeon hold principal). Consider now z™~". For
any y € R, we observe that

and so by cancelation, yx = y. But this holds for all y and so £™~" is a multiplicative identity
(note the ring is commutative). Now we need to show that multiplicative inverses exist. But if
1 =2™"" for some m > n + 1 (which we can always arrange again by the pigeon hole principal),
then 2™ "~ ! is the multiplicative inverse of x.

m—n

Chapter 4, Section 2: #5 Let R be a ring for which 22 = x for all + € R. Prove that R is
commutative.

Solution: Part of this proof is due to Robin Chapman and was found on the following website:
(it obviously uses ideas lots of people were talking about also with me in office hours also).

http://www.math.niu.edu/ rusin/known-math/99/commut_ring

First we notice that 23 = z for all # € R, so that means (2z)% = 2z and thus 8z = 823 = 2z and
so 6 = 0. Thus 3z = —3z for all z € R.
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We also know

O0=(z+y)—z—y=(r+y)’ —2° -y’ =2’y +aye + ya® + 2y’ + yoy + y’x

and plugging in y = 22 yields
0 = 3z 4 325
and so using that 23 = x, we have
0 = 3x(2®) + 32%(2%) = 322 + 32% = 322 + 32
This holds for any . Thus
322 = -3z = 3z

for any x. Plugging in now x = = + y we get:

32+ 3y =3(x +y) = 3(z +y)? = 32 + 3wy + 3yx + 3y* = 3z + 3zy + 3yx + 3y
and so

0 = 3zy + 3yz
Thus 3zy = 3yz. This is a good start!
Now, we notice the following (as pointed out in office hours):

0=0+0=((z+y)’—2°—9°) + (¢ —y)* =2 +¢*) = 220¢” + 2yay + 2y°x
Multiplying through on the left and right by y we get:
0 = 040 = y(2zy°+2yzy+2y°x) — 2z +2yzy+20° )y = 2y’ 420 wy+2y3 r— 221> —2yxy® — 20 1y
which is just

0 =2y3x — 22y° = 2yx — 2zy

and so 2yx = 2xy. Subtracting this from 3xy = 3yx gives us xy = yx which completes the proof.

Chapter 4, Section 2: #8 If F' is a finite field, show that

(a) There exists a prime p such that pa = 0 for all a € F.
(b) If F has g elements, then ¢ = p™ for some integer n.

Solution: First we prove (a). We let n = |F|. By Lagrange’s theorem, we know na = 0 for
all a € F. Let p be the smallest positive integer such that p(1) = 0 where 1 is the multiplicative
identity of F'. We will prove that p is prime so suppose that p = nm is composite with n,m > 1.
Then
0 =mnm(1l) = (nl)(ml).

Since every field is an integral domain, we thus know nl = 0 or m1 = 0. But either leads to a
contradiction since p is the smallest integer such that p1 = 0. Thus p is prime. But now if pl = 0,
then we notice that pz = (pl)(z) = 0z for any x € R and so px = 0 for all x € R which completes
the proof.

Now we prove (b). Suppose that |F| = q. Now, we know that the p from part (a) divides g by
Lagrange’s theorem. On the other hand, if any other prime p’ # p divides ¢, then by Cauchy’s
theorem for the additive group of F, F' contains an element y of order p’. Then p'y = 0. But we
also know that pz = 0 and so p divides the order of  (which is p’ by assumption). But this is
clearly impossible since p and p’ are distinct primes.



