HOMEWORK \#6 - MATH 435

DUE MONDAY MARCH 19TH

Chapter 4, Section 1: \#35 For R as in Example 10, show that $S=\{f \in R \mid \mathrm{f}$ is differentiable on $(0,1)\}$ is a subring of R which is not an integral domain.

Solution: First we need to prove that S is a subring. It is certainly closed under addition and multiplication since sums and products of differentiable functions are differentiable. It also has the additive identity since the constant function $f(x)=0$ is differentiable. Finally, if $f \in S$, then certainly $-f$ is differentiable also and so $-f \in S$. These are all we have to prove to demonstrate that S is a subring.

Now, we must prove that S is not an integral domain. Consider the functions defined on the domain $(0,1)$.

$$
f(x)=\left\{\begin{array}{cl}
0, & x \leq \frac{1}{2} \\
\left(x-\frac{1}{2}\right)^{2}, & x \geq \frac{1}{2}
\end{array} \quad g(x)=\left\{\begin{array}{cl}
\left(x-\frac{1}{2}\right)^{2}, & x \leq \frac{1}{2} \\
0, & x \geq \frac{1}{2}
\end{array}\right.\right.
$$

Note that f is differentiable since the derivative (from the left) of f at $\frac{1}{2}$ is 0 , and the derivative from the right is also $2\left(\frac{1}{2}-\frac{1}{2}\right)^{1}=0$. Likewise for g. Thus both $f, g \in S$. But then notice that $f \cdot g=0$ (since $(f \cdot g)(x)=f(x) g(x)$ and either $f(x)=0$ or $g(x)=0$ for any $x \in(0,1)$. This completes the proof.

Chapter 4, Section 2: \#2 If R is an integral domain and $a b=a c$ for $0 \neq a \in R$ and some $b, c \in R$, show that $b=c$.

Solution: Note $a b=a c$ implies that $a b-a c=0$ and so $a(b-c)=0$. Thus $a=0$ (which is impossible since we assumed $a \neq 0$) or $b-c=0$ (which is the only remaining possibility). Thus $b=c$ and we are done.

Chapter 4, Section 2: \#3 If R is a finite integral domain, show that R is a field.
Solution: Our first order of business is to prove that R contains 1 . Choose $x \in R$ nonzero. Then $x^{n}=x^{m}$ for some integers $n<m$ (by the pigeon hold principal). Consider now x^{m-n}. For any $y \in R$, we observe that

$$
\left(y x^{m-n}\right) x^{n}=y x^{m}=y x^{n}
$$

and so by cancelation, $y x^{m-n}=y$. But this holds for all y and so x^{m-n} is a multiplicative identity (note the ring is commutative). Now we need to show that multiplicative inverses exist. But if $1=x^{m-n}$ for some $m>n+1$ (which we can always arrange again by the pigeon hole principal), then x^{m-n-1} is the multiplicative inverse of x.

Chapter 4, Section 2: \#5 Let R be a ring for which $x^{3}=x$ for all $x \in R$. Prove that R is commutative.

Solution: Part of this proof is due to Robin Chapman and was found on the following website: (it obviously uses ideas lots of people were talking about also with me in office hours also).
http://www.math.niu.edu/~rusin/known-math/99/commut_ring

First we notice that $x^{3}=x$ for all $x \in R$, so that means $(2 x)^{3}=2 x$ and thus $8 x=8 x^{3}=2 x$ and so $6 x=0$. Thus $3 x=-3 x$ for all $x \in R$.

We also know

$$
0=(x+y)-x-y=(x+y)^{3}-x^{3}-y^{3}=x^{2} y+x y x+y x^{2}+x y^{2}+y x y+y^{2} x
$$

and plugging in $y=x^{2}$ yields

$$
0=3 x^{4}+3 x^{5}
$$

and so using that $x^{3}=x$, we have

$$
0=3 x\left(x^{3}\right)+3 x^{2}\left(x^{3}\right)=3 x^{2}+3 x^{3}=3 x^{2}+3 x
$$

This holds for any x. Thus

$$
3 x^{2}=-3 x=3 x
$$

for any x. Plugging in now $x=x+y$ we get:

$$
3 x+3 y=3(x+y)=3(x+y)^{2}=3 x^{2}+3 x y+3 y x+3 y^{2}=3 x+3 x y+3 y x+3 y
$$

and so

$$
0=3 x y+3 y x
$$

Thus $3 x y=3 y x$. This is a good start!
Now, we notice the following (as pointed out in office hours):

$$
0=0+0=\left((x+y)^{3}-x^{3}-y^{3}\right)+\left((x-y)^{3}-x^{3}+y^{3}\right)=2 x y^{2}+2 y x y+2 y^{2} x
$$

Multiplying through on the left and right by y we get:
$0=0+0=y\left(2 x y^{2}+2 y x y+2 y^{2} x\right)-\left(2 x y^{2}+2 y x y+2 y^{2} x\right) y=2 y x y^{2}+2 y^{2} x y+2 y^{3} x-2 x y^{3}-2 y x y^{2}-2 y^{2} x y$ which is just

$$
0=2 y^{3} x-2 x y^{3}=2 y x-2 x y
$$

and so $2 y x=2 x y$. Subtracting this from $3 x y=3 y x$ gives us $x y=y x$ which completes the proof.
Chapter 4, Section 2: \#8 If F is a finite field, show that
(a) There exists a prime p such that $p a=0$ for all $a \in F$.
(b) If F has q elements, then $q=p^{n}$ for some integer n.

Solution: First we prove (a). We let $n=|F|$. By Lagrange's theorem, we know $n a=0$ for all $a \in F$. Let p be the smallest positive integer such that $p(1)=0$ where 1 is the multiplicative identity of F. We will prove that p is prime so suppose that $p=n m$ is composite with $n, m>1$. Then

$$
0=n m(1)=(n 1)(m 1) .
$$

Since every field is an integral domain, we thus know $n 1=0$ or $m 1=0$. But either leads to a contradiction since p is the smallest integer such that $p 1=0$. Thus p is prime. But now if $p 1=0$, then we notice that $p x=(p 1)(x)=0 x$ for any $x \in R$ and so $p x=0$ for all $x \in R$ which completes the proof.

Now we prove (b). Suppose that $|F|=q$. Now, we know that the p from part (a) divides q by Lagrange's theorem. On the other hand, if any other prime $p^{\prime} \neq p$ divides q, then by Cauchy's theorem for the additive group of F, F contains an element y of order p^{\prime}. Then $p^{\prime} y=0$. But we also know that $p x=0$ and so p divides the order of x (which is p^{\prime} by assumption). But this is clearly impossible since p and p^{\prime} are distinct primes.

