
HOMEWORK #6 – MATH 435

DUE MONDAY MARCH 19TH

Chapter 4, Section 1: #35 For R as in Example 10, show that S = {f ∈ R | f is differentiable on (0, 1)}
is a subring of R which is not an integral domain.

Solution: First we need to prove that S is a subring. It is certainly closed under addition
and multiplication since sums and products of differentiable functions are differentiable. It also has
the additive identity since the constant function f(x) = 0 is differentiable. Finally, if f ∈ S, then
certainly −f is differentiable also and so −f ∈ S. These are all we have to prove to demonstrate
that S is a subring.

Now, we must prove that S is not an integral domain. Consider the functions defined on the
domain (0, 1).

f(x) =

{
0, x ≤ 1

2
(x− 1

2)2, x ≥ 1
2

g(x) =

{
(x− 1

2)2, x ≤ 1
2

0, x ≥ 1
2

Note that f is differentiable since the derivative (from the left) of f at 1
2 is 0, and the derivative

from the right is also 2(12 −
1
2)1 = 0. Likewise for g. Thus both f, g ∈ S. But then notice that

f · g = 0 (since (f · g)(x) = f(x)g(x) and either f(x) = 0 or g(x) = 0 for any x ∈ (0, 1). This
completes the proof.

Chapter 4, Section 2: #2 If R is an integral domain and ab = ac for 0 6= a ∈ R and some
b, c ∈ R, show that b = c.

Solution: Note ab = ac implies that ab − ac = 0 and so a(b − c) = 0. Thus a = 0 (which is
impossible since we assumed a 6= 0) or b − c = 0 (which is the only remaining possibility). Thus
b = c and we are done.

Chapter 4, Section 2: #3 If R is a finite integral domain, show that R is a field.

Solution: Our first order of business is to prove that R contains 1. Choose x ∈ R nonzero.
Then xn = xm for some integers n < m (by the pigeon hold principal). Consider now xm−n. For
any y ∈ R, we observe that

(yxm−n)xn = yxm = yxn

and so by cancelation, yxm−n = y. But this holds for all y and so xm−n is a multiplicative identity
(note the ring is commutative). Now we need to show that multiplicative inverses exist. But if
1 = xm−n for some m > n + 1 (which we can always arrange again by the pigeon hole principal),
then xm−n−1 is the multiplicative inverse of x.

Chapter 4, Section 2: #5 Let R be a ring for which x3 = x for all x ∈ R. Prove that R is
commutative.

Solution: Part of this proof is due to Robin Chapman and was found on the following website:
(it obviously uses ideas lots of people were talking about also with me in office hours also).

http://www.math.niu.edu/˜rusin/known-math/99/commut ring

First we notice that x3 = x for all x ∈ R, so that means (2x)3 = 2x and thus 8x = 8x3 = 2x and
so 6x = 0. Thus 3x = −3x for all x ∈ R.
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We also know

0 = (x + y)− x− y = (x + y)3 − x3 − y3 = x2y + xyx + yx2 + xy2 + yxy + y2x

and plugging in y = x2 yields
0 = 3x4 + 3x5

and so using that x3 = x, we have

0 = 3x(x3) + 3x2(x3) = 3x2 + 3x3 = 3x2 + 3x

This holds for any x. Thus
3x2 = −3x = 3x

for any x. Plugging in now x = x + y we get:

3x + 3y = 3(x + y) = 3(x + y)2 = 3x2 + 3xy + 3yx + 3y2 = 3x + 3xy + 3yx + 3y

and so
0 = 3xy + 3yx

Thus 3xy = 3yx. This is a good start!
Now, we notice the following (as pointed out in office hours):

0 = 0 + 0 =
(
(x + y)3 − x3 − y3

)
+
(
(x− y)3 − x3 + y3

)
= 2xy2 + 2yxy + 2y2x

Multiplying through on the left and right by y we get:

0 = 0+0 = y(2xy2+2yxy+2y2x)−(2xy2+2yxy+2y2x)y = 2yxy2+2y2xy+2y3x−2xy3−2yxy2−2y2xy

which is just
0 = 2y3x− 2xy3 = 2yx− 2xy

and so 2yx = 2xy. Subtracting this from 3xy = 3yx gives us xy = yx which completes the proof.

Chapter 4, Section 2: #8 If F is a finite field, show that

(a) There exists a prime p such that pa = 0 for all a ∈ F .
(b) If F has q elements, then q = pn for some integer n.

Solution: First we prove (a). We let n = |F |. By Lagrange’s theorem, we know na = 0 for
all a ∈ F . Let p be the smallest positive integer such that p(1) = 0 where 1 is the multiplicative
identity of F . We will prove that p is prime so suppose that p = nm is composite with n,m > 1.
Then

0 = nm(1) = (n1)(m1).

Since every field is an integral domain, we thus know n1 = 0 or m1 = 0. But either leads to a
contradiction since p is the smallest integer such that p1 = 0. Thus p is prime. But now if p1 = 0,
then we notice that px = (p1)(x) = 0x for any x ∈ R and so px = 0 for all x ∈ R which completes
the proof.

Now we prove (b). Suppose that |F | = q. Now, we know that the p from part (a) divides q by
Lagrange’s theorem. On the other hand, if any other prime p′ 6= p divides q, then by Cauchy’s
theorem for the additive group of F , F contains an element y of order p′. Then p′y = 0. But we
also know that px = 0 and so p divides the order of x (which is p′ by assumption). But this is
clearly impossible since p and p′ are distinct primes.


