HOMEWORK \#10 - MATH 435

SOLUTIONS

Chapter 5, Section 3: \#12 If a is as in Problem 11, show that $F(a) \simeq F(x)$ where $F(x)$ is the field of rational functions in x over F.

Solution: Consider the function $\phi: F(x) \rightarrow F(a)$ defined by the rule $\phi(f(x) / g(x))=$ $f(a) / g(a)$. This is certainly well defined since first $g(a) \neq 0$ for any non-zero $g(x)$ (because a is transcendental). Also note $f(x) h(x) /(g(x) h(x))$ is sent to $f(a) h(a) /(g(a) h(a))=f(a) / g(a)$ and so ϕ is well defined.

Of course,

$$
\begin{aligned}
& \phi\left(f(x) / g(x)+f^{\prime}(x) / g^{\prime}(x)\right) \\
= & \phi\left(\left(f(x) g^{\prime}(x)+f^{\prime}(x) g(x)\right) /\left(g(x) g^{\prime}(x)\right)\right) \\
= & \left(f(a) g^{\prime}(a)+f^{\prime}(a) g(a)\right) /\left(g(a) g^{\prime}(a)\right) \\
= & f(a) / g(a)+f^{\prime}(a) / g^{\prime}(a) \\
= & \phi(f(x) / g(x))+\phi\left(f^{\prime}(x) / g^{\prime}(x)\right)
\end{aligned}
$$

and likewise

$$
\begin{aligned}
& \phi\left((f(x) / g(x))\left(f^{\prime}(x) / g^{\prime}(x)\right)\right) \\
= & \phi\left(\left(f(x) f^{\prime}(x)\right) /\left(g(x) g^{\prime}(x)\right)\right) \\
= & \left(f(a) f^{\prime}(a)\right) /\left(g(a) g^{\prime}(a)\right) \\
= & (f(a) / g(a))\left(f^{\prime}(a) / g^{\prime}(a)\right) \\
= & \phi(f(x) / g(x)) \phi\left(f^{\prime}(x) / g^{\prime}(x)\right)
\end{aligned}
$$

which proves that ϕ is a ring homomorphism. It remains to show that ϕ is bijective. Certainly it is surjective for any $f(a) / g(a) \in K(a)$ can be written as $\phi(f(x) / g(x))$. Finally, $f(x) / g(x) \in \operatorname{ker} \phi$ and so therefore that $\phi(f(x) / g(x))=0$. This implies that $f(a) / g(a)=0$ and thus that $f(a)=0$. But then $f(x)$ must be the zero polynomial since a is transcendental. Thus $f(x) / g(x)=0$ as well. Thus $\operatorname{ker} \phi=\{0\}$ and so ϕ is injective. This completes the proof.

Chapter 5, Section 3: \#14 Using the result of \#13, show that a finite field k has p^{n} elements for some prime p and some positive integer n.

Solution: Let p denote the characteristic of the field k in question. Since k is finite, p is finite and as we've seen before, p must also be prime. Consider the set $F=\{\underbrace{1+\cdots+1}_{m} \mid 0 \leq m \leq p-1\}$. This set is certainly closed under addition and multiplication (since $\underbrace{1+\cdots+1}_{p}=0$). It is therefore a subringof a field. Thus F is an integral domain. But F is also a finite integral domain so that F itself is a field.

Now, we can consider $[k: F]$. This number is finite since k is finite. Thus $|k|=|F|^{n}$ for some integer n. But $|F|=p$ and the problem is completed.

Chapter 5, Section 3: \#15 Construct two fields K and F such that K is an algebraic extension of F but is not a finite extension of F.

Solution: There are many correct solutions, here's one that uses the notation of the next chapter. Choose $F=\mathbb{Q}$. Let $K=E_{\mathbb{R}}(F)$, the algebraic closure of F in \mathbb{R}. This is certainly algebraic (I just adjoined only algebraic elements). Suppose that $[K: F]=n<\infty$, and thus
choose $a=2^{\frac{1}{n+1}} \in \mathbb{R}$. We notice that $2^{\frac{1}{n}}$ is a root of the polynomial $f(x)=x^{n+1}+2$, which is irreducible in $\mathbb{Q}[x]$ by Eisenstein. Thus a is algebraic and so $a \in K$. Therefore we have the chain

$$
F \subseteq F[a] \subseteq K
$$

of extension fields and so:

$$
[K: F]=[K: F[a]] \cdot[F[a]: F] .
$$

$\operatorname{But}[F[a]: F]=n+1$ and so $n+1$ divides $[K: F]=n$, a contradiction.
Chapter 5, Section 4: \#2 If $a, b \in K$ are algebraic over F of degrees m and n respectively and suppose that m and n are relatively prime. Prove that $[F(a, b): F]=m n$.

Solution: First we make some simple observations. $F(a)$ is the smallest field containing F and a, and also that $F[a]=F(a)$. Therefore $F(a, b)=F[a](b)=F[a][b]$ is the smallest field containing F and also both a and b. Thus $F[b][a]=F(b, a)=F(a, b)=F[a][b]$. Now, we have the chain of containments $F \subseteq F[a] \subseteq F[a][b]=F(a, b)$ and so we can write

$$
[F(a, b): F]=[F[a]: F] \cdot[F[a][b]: F[a]]
$$

but therefore $m=[F[a]: F]$ divides $[F(a, b): F]$. By symmetry, n also divides $[F(a, b): F]$ and so $[F(a, b): F] \geq m n$ since m and n are relatively prime.

On the other hand, $g(b)=0$ for some $g(x) \in F[x]$ of degree n. Note $F[x] \subseteq F[a][x]$ and so $g(x) \in F[a][x]$ as well. Thus $g(b)=0$. Let's let $h(x) \in F[a][x]$ be the minimal polynomial for b, so that $h \mid g$. It follows that $\operatorname{deg} h \leq n$ and so $[F[a][b]: F[a]]=\operatorname{deg} h \leq n$. Thus

$$
m n \leq[F(a, b): F]=[F[a]: F] \cdot[F[a][b]: F[a]]=m \cdot[F[a][b]: F[a]] \leq m n
$$

and so we have our desired equality.
Chapter 5, Section 4: \#4 If $K \subseteq F$ is such that $[K: F]=p$ with p a prime, show that $K=F(a)$ for every $a \in K \backslash F$.

Solution: Choose $a \in K \backslash F$. Thus we have a chain of field extensions

$$
F \subsetneq F(a)=F[a] \subseteq K
$$

Note the first inequality follows because $a \notin F$. Thus $[F(a): F]>1$ (it is the degree of the minimal polynomial for a over F, that polynomial is not linear since $a \notin F)$.

Therefore

$$
p=[K: F]=[K: F[a]] \cdot[F[a]: F]
$$

and so since $[F[a]: F]>1$ and divides $p,[F[a]: F]=p$. But we have just shown that the F-vector subspace $F[a] \subseteq K$ has the same dimension over F as does K. Thus from a previous homework $F[a]=K$. This completes the proof.

