# FIELDS AND POLYNOMIAL RINGS 

MATH 435 SPRING 2012
NOTES FROM APRIL 6TH, 2012

## 1. Irreducible polynomials

Throughout this section, $k$ denotes a field. Before really starting, I'd like to point out a couple lemmas. The first ties together the notions of ideal containment and elements dividing each other.
Lemma 1.1. Given any elements $f, g$ in an integral domain with unity $R$, we have that $f \mid g$ if and only if $\langle g\rangle \subseteq\langle f\rangle$.

Proof. if $f \mid g$, then $g=u f$ for some $u \in R$. But then $r g=(r u) f \in\langle f\rangle$ for any $r \in R$. Thus $\langle g\rangle \subseteq\langle f\rangle$. Conversely, if $\langle g\rangle \subseteq\langle f\rangle$ then $g \in\langle f\rangle$ and thus $g=u f$ for some $u \in R$. Thus $f \mid g$ as desired.

The next lemma explains when principal ideals are equal to the whole ring.
Lemma 1.2. Suppose that $R$ is a commutative ring with unity and $f \in R$. Then $\langle f\rangle=R$ if and only if $f$ is invertible.

Proof. If $\langle f\rangle=R$, then $1 \in\langle f\rangle$ since $1 \in R$. Thus there exists $r \in R$ such that $r f=1$, but this implies that $f$ is invertible.

Conversely, if $f$ is invertible with inverse $f^{-1}$, then $1=f-1 f \in\langle f\rangle$. But then for any element $r \in R$,

$$
r=r \cdot 1 \in\langle f\rangle
$$

which implies that $R=\langle f\rangle$ as well.
We begin with a definition of an irreducible element.
Definition 1.3. Suppose that $f \in k[x]$ is a non-zero non-invertible element. Then we say that $f$ is irreducible if any of the following equivalent conditions hold (note that if one of them hold, then all of them hold).
(1) For every element $v \in k[x]$, either $\operatorname{gcd}(f, v)=1$ or $f \mid v$.
(2) If $f \mid(a b)$ for some elements $a, b \in k[x]$, then either $f \mid a$ or $f \mid b$.
(3) If $f=g h$ for some elements $g, h \in k[x]$, then either $g$ or $h$ invertible.
(4) The ideal $\langle f\rangle$ is maximal.
(5) The quotient ring $k[x] /\langle f\rangle$ is a field.

Proof that the definitions above are equivalent. Certainly conditions 4. and 5. are equivalent.
First we show that $1 . \Rightarrow 2$. Suppose then that $f \mid(a b)$ and $f$ does not divide $a$ and $f$ does not divide $b$. We write $a b=f u$ for some $u \in k[x]$. Since $f$ does not divide $a$, we must have $\operatorname{gcd}(f, a)=1$. Thus there exists $s, t \in k[x]$ such that $s f+t a=1$. Multiplying through by $b$, we get

$$
s f b+t a b=b
$$

and so $s f b+t f u=b$. Factoring out an $f$, we get that $f(s b+t u)=b$ and so $f$ divides $b$, a contradiction.

Now we show that $2 . \Rightarrow 3$. Indeed, suppose now that $f=g h$. Then since $f \mid(g h)$, we have that $f \mid g$ or $f \mid h$. In other words, either $g=s f$ or $h=t f$ for some $s$ or $t \in R$. In the first case, we obtain

$$
f=g h=(s f) h
$$

which implies that $1=s h$ which proves that $h$ is invertible. In the second case, we obtain

$$
f=g h=g(t f)
$$

which implies that $1=g t$ which proves that $g$ is invertible. Thus either $g$ or $h$ is invertible, as desired.

Next we show that $3 . \Rightarrow 1$. which will prove the equivalence of $1 ., 2$., and 3 . Thus choose $v \in k[x]$ and suppose that $1 \neq d=\operatorname{gcd}(f, v)$ and that $f$ does not divide $v$. But since $d \mid f$, we have that $f=d u$ for some $u \in k[x]$. Thus either $d$ or $u$ is invertible. We will obtain a contradiction in either case.
$u$ is invertible: In this case, $d=f u^{-1}$ and $f \mid d$. But note $d \mid v$ and so $f \mid v$ as well. But this is a contradiction.
$d$ is invertible: In this case, $\operatorname{deg} d=0$ and so $d$ is a monic polynomial of degree 0 , in other words, $d=1$, a contradiction.
Now we prove that 4. (or 5.) are equivalent to 1., 2. and 3. Suppose that 5 . holds, thus $\langle f\rangle$ is in particular a prime ideal. We will show that 2 . holds. Indeed, suppose that $f \mid(a b)$ for some $a, b \in k[x]$. Then $a b \in\langle f\rangle$ which implies that either $a \in\langle f\rangle$ or $b \in\langle f\rangle$, since $\langle f\rangle$ is a prime ideal by assumption. In the first case, $f \mid a$ and in the second, $f \mid b$. But this proves that $f$ satisfies condition 2.

Finally, we assume that condition 3. holds but that $\langle f\rangle$ is not maximal. Thus there exists an ideal $J \subseteq k[x]$ such that

$$
\langle f\rangle \subsetneq J \subsetneq k[x]
$$

But since $k[x]$ is a PID, $J=\langle g\rangle$ for some $g \in k[x]$ and so $f \in\langle g\rangle$. Thus there exists $h \in k[x]$ such that $f=g h$. But then either $g$ or $h$ is invertible. Again we consider two cases:
$g$ is invertible: In this case, $J=k[x]$ which is impossible.
$h$ is invertible: In this case, $h^{-1} f=g$ and so $f \mid g$ and thus $J=\langle g\rangle \subseteq\langle f\rangle$ which is also impossible.
Since both possibilities lead to contradiction, we have completed the proof.
Remark 1.4. The condition 2. above is usually described as $f$ is prime whereas the condition in 1. is usually described as $f$ is irreducible. As we have seen, in $k[x]$ these conditions are equivalent, but for a more general integral domain with unity, they are distinct. However, the proof $2 . \Rightarrow 3$. always holds (we didn't use any special properties of $k[x]$ ). In other words, every prime element is irreducible.

## 2. TESTING FOR IRREDUCIBILITY

In this section, develop some tests to discern whether a given element is irreducible.
Proposition 2.1. Suppose that $k$ is a field and that $f \in k[x]$, then $f$ has a degree 1 factor (in other words $(b x-a) \mid f$ for some $0 \neq b \in k$ and $a \in k$ ) if and only if $f$ has a root in $k$.

Proof. Indeed, suppose first that $(b x-a) \mid f$ for some nonzero $b \in k$ and $a \in k$. By replacing $a$ by $a / b$, we may assume that $b=1$ and thus that $(x-a) \mid f$. Thus $f(x)=(x-a) g(x)$ which implies that

$$
f(a)=(a-a) g(a)=0 g(a)=0
$$

and thus $f$ has a root in $k$.

Conversely, suppose that $f$ has a root $a \in k$. Consider then $f(x)=(x-a) q(x)+r(x)$ for some $q(x), r(x) \in k[x]$ where $\operatorname{deg} r<\operatorname{deg}(x-a)=1$. But then $\operatorname{deg} r=0$ (or $r=0$ itself). Thus $r(x)=r$ is a constant. Plugging in $a$ we get

$$
0=f(a)=(a-a) q(a)+r(a)=0+r=r
$$

Thus $r=r(x)=0$ and so $(x-a) \mid f$ as desired.
Here is an important corollary.
Corollary 2.2. A polynomial $f(x) \in k[x]$ of degree 2 or 3 is irreducible if and only if $f(a) \neq 0$ for every $a \in k$.
Proof. Certainly if $f(a)=0$ then $(x-a) \mid f(x)$ and so $f$ is not irreducible since then $f(x)=$ $(x-a) g(x)$ for some $g(x)$ of degree 1 or 2 (in other words, $g$ is not invertible).

Conversely, if $f=g h$ where neither $g$ or $h$ is invertible, then by degree considerations, either $g$ or $h$ is degree 1. Thus either $g$ or $h$ must be of the form $b x-c$ for some $0 \neq b, c \in k$. Thus $x-\frac{c}{b}$ also divides $f(x)$ and so $f(c / b)=0$. This completes the proof.

