
EXTRA CREDIT OVER SPRING BREAK #2

DUE FRIDAY MARCH 16TH

Throughout this assignment, we will ALWAYS be dealing with Abelian groups written under
addition.

1. Finitely generated Abelian groups

Definition 1.1. Suppose that A is an Abelian group under addition. We say that A is finitely
generated if there exist finitely many elements a1, . . . , ak ∈ A such that every element a ∈ A can
be written as:

a = n1a1 + · · ·+ nkak
for some integers ni ∈ Z.

A finitely generated Abelian group should be viewed as something like a vector space, with the
finite generating set being something like a spanning set. Linear dependence is much more subtle
however, and it is not true that a minimal generating set is linearly independent.

Exercise 1.2. Prove that every cyclic group (under addition) is a finite generated Abelian group.
(1 point)

Exercise 1.3. Suppose that A1 and A2 are finitely generated Abelian groups. Prove that A1×A2 =
{(a1, a2) | a1 ∈ A1, a2 ∈ A2} is also a finitely generated Abelian group where the group operation is
performed componentwise.1 (1 point)

Exercise 1.4. Consider Q under addition. Prove that Q is NOT a finitely generated Abelian
group. (1 point)

Consider now the following theorem:

Theorem 1.5. Suppose that G is a finitely generated Abelian group generated by a1, . . . , ak. Then
there exists a surjective group homomorphism:

Φ : Zk = Z× Z× · · · × Z→ G

which sends (n1, . . . , nk) to n1a1 + · · ·+ nkak.

Proof. The map is clearly surjective, by the definition of a finitely generated Abelian group. We
need to prove it is also group homomorphism. But simply note that

Φ
(

(n1, . . . , nk) + (m1, . . . ,mk)
)

= Φ
(

(n1 + m1, . . . , nk + mk)
)

= (n1 + m1)a1 + · · ·+ (nk + mk)ak
=

(
n1a1 + · · ·+ nkak

)
+
(
m1a1 + . . .mkak

)
= Φ

(
(n1, . . . , nk)

)
+ Φ

(
(m1, . . . ,mk)

)
.

which completes the proof. �

We will also need the following fact which I will not prove.

1(a1, a2) + (a′
1, a

′
2) = (a1 + a′

1, a2 + a′
2)
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Theorem 1.6. Every subgroup N of a finitely generated Abelian group A is also a finitely generated
Abelian group.

Proof. I will skip this, you may take it on faith or look it up. �

Now we come to a subtle point. Suppose that A is a finitely generated Abelian group and
Φ : Zk → A is as above. Then ker Φ is also a finitely generated Abelian group, and so we have
another surjective map Ψ : Zl → ker(Φ). By composition, we have a map Γ,

Zl Ψ−→ ker(Φ) ↪→ Zk

from Zl to Zk.

Exercise 1.7. View the elements of Zl as column vectors and explain why this map Γ can be
identified with a k × l matrix with integer entries (1 point)

Exercise 1.8. Prove that Zk/Γ(Zl) is isomorphic to A.

We call this matrix M .
If we do one of the following 6 operations on M , we get a new k × l matrix:

Column replacement: Add an integer multiple of one column to another column.
Column interchange: Switch two columns.
Column scaling: Scale a column by −1.
Row replacement: Add an integer multiple of one row to another row.
Row interchange: Switch two rows.
Row scaling: Scale a row by −1.

After doing one (or more) of these operations, each of the resulting matrices M ′ also gives us a
map Γ′ : Zl → Zk. Then consider the quotient group:

Zk/Γ′(Zl).

Exercise 1.9. Show that if you do any single operation above, then

Zk/Γ′(Zl) ' A.

This is quite involved, although once you get the hang of it, it is not too hard. (3 points)

Suppose that after doing some series of column and row operations as above, you obtain a matrix
N with corresponding map ΓN . We notice that Zk/ΓN (Zl) is still going to be isomorphic to A.

Exercise 1.10. Suppose further that N is a diagonal matrix (or at least a matrix which is zero in
every entry aij for i 6= j). Prove that A is isomorphic to (Z/f1Z)× · · · × (Z/fkZ) for some integers
fi, some of which are possibly zero. (2 points)

Finally, we come to the big theorem.

Theorem 1.11. Suppose that A is a finitely generated Abelian group. Then A is isomorphic to
(Z/f1Z)× · · · × (Z/fkZ) for some integers fi (possibly zero).

Exercise 1.12. Prove the theorem by explaining how to use the column and row operations
described above to transform any matrix into a diagonal (enough) matrix. (2 points).
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