MATH 435, EXAM \#1

\square

- You have 50 minutes to do this exam.
- No calculators!
- No notes!
- For proofs/justifications, please use complete sentences and make sure to explain any steps which are questionable.
- Good luck!

Problem	Total Points	Score
1	30	
2	25	
3	25	
4	20	
EC	10	
Total	100	

1. Definitions and short answers.
(a) State Lagrange's theorem. (5 points)

Solution: If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.
(b) Give an example of a function $f: G \rightarrow H$ between two groups that is NOT a homomorphism. (5 points)

Solution: Consider $G=H=\mathbb{Z}$ under addition. Then consider the function $f(x)=x^{2}$. We observe that $f(x+y)=(x+y)^{2} \neq x^{2}+y^{2}=f(x)+f(y)$, at least in general, so that this function is not a homomorphism.
(c) Give an example of an element of order 3 in a group of order 6 . (5 points)

Solution: The element 2 has order three inside $\mathbb{Z}_{\bmod 6}$.
(d) In class, we showed that every group G is isomorphic to a subgroup of $A(S)$ for some set S. Define the term $A(S)$ and state what set S was used in the proof of this fact. (5 points)

Solution: $A(S)$ denotes the set of bijective functions from S to S. In that problem I mentioned, we set $S=G$.
(e) Assume that the kernel of a group homomorphism is a subgroup, prove that the kernel of a group homomorphism is a normal subgroup. (5 points)

Solution: Suppose that $\phi: G \rightarrow G^{\prime}$ is a group homomorphism and that K is the kernel. We need to show that $x K x^{-1} \subseteq K$ for all $x \in G$. Fix an $x \in G$ and $k \in K$, we need to show that $x k x^{-1} \in K$. In other words, we need to show that $\phi\left(x k x^{-1}\right)=e_{G^{\prime}}$. But

$$
\phi\left(x k x^{-1}\right)=\phi(x) \phi(k) \phi\left(x^{-1}\right)=\phi(x) e_{G^{\prime}} \phi\left(x^{-1}\right)=\phi(x) \phi\left(x^{-1}\right)=\phi\left(x x^{-1}\right)=\phi\left(e_{G}\right)=e_{G^{\prime}}
$$

as desired. This completes the proof.
(f) Prove that every group of order 5 is cyclic using Lagrange's theorem. (5 points)

Solution: Suppose that G is a group of order 5. Since G has more than one element, we choose $x \in G$, $x \neq e$. Consider now $H=\langle x\rangle \subseteq G$. This is a subgroup of G. By Lagrange's theorem, the order of H is either 1 or 5 . Now, H contains x and since it is a subgroup, it also contains e. Thus $|H| \geq 2$ and so $|H|=5$. But then $G=H$ and since H is cyclic, so is G.
2. Consider G the group of rotations of a hexagon, $G=\{e, r 60, r 120, r 180, r 240, r 300\}$.
(a) Show that G is cyclic and identify all the generators. (6 points)

Solution: Note that $e=r 60^{6}, r 60=r 60^{1}, r 120=r 60^{2}, r 180=r 60^{3}, r 240=r 60^{4}$ and $r 300=r 60^{5}$. Thus $G=\langle r 60\rangle$ is cyclic. It is easy to see that the only generators of G are $r 60$ and $r 300=r 60^{-1}$. All the other elements are $r 60$ raised to a power not coprime to 6 .
(b) Write down the elements of $H=\langle r 180\rangle$, the cyclic subgroup generated by rotation by 180 degrees. Also write down all of the distinct cosets of H. (7 points)

Solution: Note

- $H=\langle r 180\rangle=\{e, r 180\}=e H=r 180 H$.
- $r 60 H=\{r 60, r 240\}=r 240 H$.
- $r 120 H=\{r 120, r 300\}=r 300 H$.

And so there are 3 distinct cosets.
(c) Write down a complete multiplication table for G / H. (12 points)

Solution:		eH	r 60 H	r 120 H
eH	eH	r 60 H	r 120 H	
r60 H	r60H	r120H	eH	
r120 H	r120H	e H	r60H	

3. Suppose that $\phi: G \rightarrow G^{\prime}$ is a group homomorphism.
(a) Prove directly that $K=\operatorname{ker}(\phi)$ is a subgroup of G. (7 points)

Solution: We first note that $\phi\left(e_{G}\right)=e_{G^{\prime}}$ (as we proved in class) and so $e_{G} \in K$.
Now we tackle closure. Suppose that $a, b \in K$ which just means that $\phi(a)=e_{G^{\prime}}$ and $\phi(b)=e_{G^{\prime}}$. We need to show that $a b \in K$. So $\phi(a b)=\phi(a) \phi(b)=e_{G^{\prime}} e_{G^{\prime}}=e_{G^{\prime}}$ which is exactly what we wanted to show.

Finally, we handle inverses. Suppose that $a \in K$ so that $\phi(a)=e_{G^{\prime}}$. We need to show that $\phi\left(a^{-1}\right)=e_{G^{\prime}}$ as well. But

$$
\phi\left(a^{-1}\right)=(\phi(a))^{-1}=e_{G^{\prime}}^{-1}=e_{G^{\prime}}
$$

which completes the proof.
(b) Prove directly that K is normal. (6 points)

Solution: We need to show that $x K x^{-1} \subseteq K$ for all $x \in G$. Fix an $x \in G$ and $k \in K$, we need to show that $x k x^{-1} \in K$. In other words, we need to show that $\phi\left(x k x^{-1}\right)=e_{G^{\prime}}$. But

$$
\phi\left(x k x^{-1}\right)=\phi(x) \phi(k) \phi\left(x^{-1}\right)=\phi(x) e_{G^{\prime}} \phi\left(x^{-1}\right)=\phi(x) \phi\left(x^{-1}\right)=\phi\left(x x^{-1}\right)=\phi\left(e_{G}\right)=e_{G^{\prime}}
$$

as desired. This completes the proof.
(c) Suppose now that G is a finite group and that ϕ is surjective. Prove that the order of G^{\prime} divides the order of G (12 points)
Hint: Use the first homomorphism theorem.
Solution: If K is the kernel of ϕ, it is a subgroup. We know that $|G|=|G / K||K|$ by Lagrange's theorem. On the other hand, the first homomorphism theorem tells us that G / K is isomorphic to G^{\prime}. But isomorphic groups have the same number of elements because there is a bijection between them. Therefore $|G / K|=\left|G^{\prime}\right|$. Plugging this back into our original equation, we have

$$
|G|=|G / K||K|=\left|G^{\prime}\right||K| .
$$

This proves that the order of G^{\prime} divides the order of G as desired.
4. Suppose that G is a group, and that $G / Z(G)$ is cyclic. Prove that G is necessarily Abelian. (20 points)

Solution: For simplicity of notation, we set $Z=Z(G)$. Note first that Z is always a normal subgroup, so the question makes sense. Write $G / Z=\langle a Z\rangle$ since G / Z is cyclic. Now choose $b, c \in G$. We need to prove that $b c=c b$. Because the cosets of Z partition the group G, and those cosets are all of the form $a^{i} Z$ for some $i \in \mathbb{Z}$, we know that $b \in a^{i} Z$ and $c \in a^{j} Z$ for some $i, j \in \mathbb{Z}$. Write $b=a^{i} z_{1}$ and $c=a^{j} z_{2}$ for some $z_{1}, z_{2} \in Z$. Then

$$
b c=\left(a^{i} z_{1}\right)\left(a^{j} z_{2}\right)=\left(a^{i} a^{j}\right)\left(z_{1} z_{2}\right)=\left(a^{i+j}\right)\left(z_{1} z_{2}\right)=\left(a^{j+i}\right)\left(z_{2} z_{1}\right)=a^{j} a^{i} z_{2} z_{1}=a^{j} z_{2} a^{i} z_{1}=c b
$$

This repeatedly uses the fact that elements of $Z=Z(G)$ commute with everything.
(EC) Suppose that G is an Abelian group and that N_{1}, N_{2} are subgroups. Suppose additionally that $N_{1} N_{2}=G$. Consider the group

$$
G / N_{1} \times G / N_{2}=\left\{\left(g_{1} N_{1}, g_{2} N_{2}\right) \mid g_{i} \in G / N_{i}\right\}
$$

Here the symbol \times just means ordinary Cartesian product. The multiplication operation on the group is entry-wise ${ }^{1}$. Prove that

$$
G /\left(N_{1} \cap N_{2}\right) \simeq G / N_{1} \times G / N_{2}
$$

by using the first homomorphism theorem. (10 points)

Hint: Write down a map from G to $G / N_{1} \times G / N_{2}$ and show it is surjective. The argument is similar to the Chinese Remainder Theorem.

Solution: Consider the function $\phi: G \rightarrow\left(G / N_{1}\right) \times\left(G / N_{2}\right)$ defined by the rule:

$$
\phi(g)=\left(g N_{1}, g N_{2}\right)
$$

Note that $\phi(a b)=\left(a b N_{1}, a b N_{2}\right)=\left(a N_{1}, a N_{2}\right) \cdot\left(b N_{1}, b N_{2}\right)=\phi(a) \cdot \phi(b)$ which proves that ϕ is a homomorphism. We now want to show that ϕ is surjective.

Suppose that $\left(g N_{1}, g^{\prime} N_{2}\right) \in G / N_{1} \times G / N_{2}$. By hypothesis, $N_{1} N_{2}=G$, and so $g=n_{1} n_{2}$ and $g^{\prime}=n_{1}^{\prime} n_{2}^{\prime}$ for some $n_{1}, n_{1}^{\prime} \in N_{1}$ and $n_{2}, n_{2}^{\prime} \in N_{2}$. Now, consider

$$
\phi\left(n_{2} n_{1}^{\prime}\right)=\left(n_{2} n_{1}^{\prime} N_{1}, n_{2} n_{1}^{\prime} N_{2}\right)=\left(n_{2} N_{1}, n_{1}^{\prime} n_{2} N_{2}\right)=\left(n_{2} N_{1}, n_{1}^{\prime} N_{2}\right)=\left(n_{2} n_{1} N_{1}, n_{1}^{\prime} n_{2}^{\prime} N_{2}\right)=\left(g N_{1}, g^{\prime} N_{2}\right)
$$

This proves that ϕ is surjective.
Therefore, we know that $G / \operatorname{ker}(\phi)=G / N_{1} \times G / N_{2}$. In particular, if we can show that $\operatorname{ker}(\phi)=N_{1} \cap N_{2}$, we are done. Now, $x \in \operatorname{ker}(\phi)$ if and only if $\phi(x)=\left(x N_{1}, x N_{2}\right)=\left(e N_{1}, e N_{2}\right)=e_{G / N_{1} \times G / N_{2}}$. But this happens if and only if both $x N_{1}=e N_{1}$ and $x N_{2}=e N_{2}$ which is equivalent to $x \in N_{1}$ and $x \in N_{2}$. But this last statement is just the same as $x \in N_{1} \cap N_{2}$. In particular, since we did this with if and only if all the way down, we have shown that $\operatorname{ker}(\phi)=N_{1} \cap N_{2}$.

[^0]
[^0]: ${ }^{1}$ In other words, $\left(a N_{1}, b N_{2}\right)\left(c N_{1}, d N_{2}\right)=\left(a c N_{1}, b d N_{2}\right)$.

