
MATH 435, EXAM #1

Your Name

• You have 50 minutes to do this exam.
• No calculators!
• No notes!
• For proofs/justifications, please use complete sentences and make sure to explain any steps which

are questionable.
• Good luck!

Problem Total Points Score

1 30

2 25

3 25

4 20

EC 10

Total 100
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1. Definitions and short answers.
(a) State Lagrange’s theorem. (5 points)

Solution: If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.

(b) Give an example of a function f : G→ H between two groups that is NOT a homomorphism. (5 points)

Solution: Consider G = H = Z under addition. Then consider the function f(x) = x2. We observe that
f(x+y) = (x+y)2 6= x2 +y2 = f(x)+f(y), at least in general, so that this function is not a homomorphism.

(c) Give an example of an element of order 3 in a group of order 6. (5 points)

Solution: The element 2 has order three inside Zmod6.

(d) In class, we showed that every group G is isomorphic to a subgroup of A(S) for some set S. Define the
term A(S) and state what set S was used in the proof of this fact. (5 points)

Solution: A(S) denotes the set of bijective functions from S to S. In that problem I mentioned, we set
S = G.

(e) Assume that the kernel of a group homomorphism is a subgroup, prove that the kernel of a group
homomorphism is a normal subgroup. (5 points)

Solution: Suppose that φ : G→ G′ is a group homomorphism and that K is the kernel. We need to show
that xKx−1 ⊆ K for all x ∈ G. Fix an x ∈ G and k ∈ K, we need to show that xkx−1 ∈ K. In other words,
we need to show that φ(xkx−1) = eG′ . But

φ(xkx−1) = φ(x)φ(k)φ(x−1) = φ(x)eG′φ(x−1) = φ(x)φ(x−1) = φ(xx−1) = φ(eG) = eG′

as desired. This completes the proof.

(f) Prove that every group of order 5 is cyclic using Lagrange’s theorem. (5 points)

Solution: Suppose that G is a group of order 5. Since G has more than one element, we choose x ∈ G,
x 6= e. Consider now H = 〈x〉 ⊆ G. This is a subgroup of G. By Lagrange’s theorem, the order of H is
either 1 or 5. Now, H contains x and since it is a subgroup, it also contains e. Thus |H| ≥ 2 and so |H| = 5.
But then G = H and since H is cyclic, so is G.
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2. Consider G the group of rotations of a hexagon, G = {e, r60, r120, r180, r240, r300}.
(a) Show that G is cyclic and identify all the generators. (6 points)

Solution: Note that e = r606, r60 = r601, r120 = r602, r180 = r603, r240 = r604 and r300 = r605. Thus
G = 〈r60〉 is cyclic. It is easy to see that the only generators of G are r60 and r300 = r60−1. All the other
elements are r60 raised to a power not coprime to 6.

(b) Write down the elements of H = 〈r180〉, the cyclic subgroup generated by rotation by 180 degrees. Also
write down all of the distinct cosets of H. (7 points)

Solution: Note

• H = 〈r180〉 = {e, r180} = eH = r180H.
• r60H = {r60, r240} = r240H.
• r120H = {r120, r300} = r300H.

And so there are 3 distinct cosets.

(c) Write down a complete multiplication table for G/H. (12 points)

Solution:

eH r60 H r120 H

eH eH r60H r120H
r60 H r60H r120H eH
r120 H r120H e H r60H
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3. Suppose that φ : G→ G′ is a group homomorphism.
(a) Prove directly that K = ker(φ) is a subgroup of G. (7 points)

Solution: We first note that φ(eG) = eG′ (as we proved in class) and so eG ∈ K.
Now we tackle closure. Suppose that a, b ∈ K which just means that φ(a) = eG′ and φ(b) = eG′ . We need

to show that ab ∈ K. So φ(ab) = φ(a)φ(b) = eG′eG′ = eG′ which is exactly what we wanted to show.
Finally, we handle inverses. Suppose that a ∈ K so that φ(a) = eG′ . We need to show that φ(a−1) = eG′

as well. But
φ(a−1) = (φ(a))−1 = e−1G′ = eG′

which completes the proof.

(b) Prove directly that K is normal. (6 points)

Solution: We need to show that xKx−1 ⊆ K for all x ∈ G. Fix an x ∈ G and k ∈ K, we need to show that
xkx−1 ∈ K. In other words, we need to show that φ(xkx−1) = eG′ . But

φ(xkx−1) = φ(x)φ(k)φ(x−1) = φ(x)eG′φ(x−1) = φ(x)φ(x−1) = φ(xx−1) = φ(eG) = eG′

as desired. This completes the proof.

(c) Suppose now that G is a finite group and that φ is surjective. Prove that the order of G′ divides the
order of G (12 points)
Hint: Use the first homomorphism theorem.

Solution: If K is the kernel of φ, it is a subgroup. We know that |G| = |G/K||K| by Lagrange’s theorem.
On the other hand, the first homomorphism theorem tells us that G/K is isomorphic to G′. But isomorphic
groups have the same number of elements because there is a bijection between them. Therefore |G/K| = |G′|.
Plugging this back into our original equation, we have

|G| = |G/K||K| = |G′||K|.
This proves that the order of G′ divides the order of G as desired.
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4. Suppose that G is a group, and that G/Z(G) is cyclic. Prove that G is necessarily Abelian. (20 points)

Solution: For simplicity of notation, we set Z = Z(G). Note first that Z is always a normal subgroup, so
the question makes sense. Write G/Z = 〈aZ〉 since G/Z is cyclic. Now choose b, c ∈ G. We need to prove
that bc = cb. Because the cosets of Z partition the group G, and those cosets are all of the form aiZ for
some i ∈ Z, we know that b ∈ aiZ and c ∈ ajZ for some i, j ∈ Z. Write b = aiz1 and c = ajz2 for some
z1, z2 ∈ Z. Then

bc = (aiz1)(ajz2) = (aiaj)(z1z2) = (ai+j)(z1z2) = (aj+i)(z2z1) = ajaiz2z1 = ajz2a
iz1 = cb.

This repeatedly uses the fact that elements of Z = Z(G) commute with everything.
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(EC) Suppose that G is an Abelian group and that N1, N2 are subgroups. Suppose additionally that
N1N2 = G. Consider the group

G/N1 ×G/N2 = {(g1N1, g2N2) | gi ∈ G/Ni}
Here the symbol × just means ordinary Cartesian product. The multiplication operation on the group is
entry-wise1. Prove that

G/(N1 ∩N2) ' G/N1 ×G/N2

by using the first homomorphism theorem. (10 points)

Hint: Write down a map from G to G/N1×G/N2 and show it is surjective. The argument is similar to the
Chinese Remainder Theorem.

Solution: Consider the function φ : G→ (G/N1)× (G/N2) defined by the rule:

φ(g) = (gN1, gN2).

Note that φ(ab) = (abN1, abN2) = (aN1, aN2) · (bN1, bN2) = φ(a) · φ(b) which proves that φ is a homomor-
phism. We now want to show that φ is surjective.

Suppose that (gN1, g
′N2) ∈ G/N1 × G/N2. By hypothesis, N1N2 = G, and so g = n1n2 and g′ = n′1n

′
2

for some n1, n
′
1 ∈ N1 and n2, n

′
2 ∈ N2. Now, consider

φ(n2n
′
1) = (n2n

′
1N1, n2n

′
1N2) = (n2N1, n

′
1n2N2) = (n2N1, n

′
1N2) = (n2n1N1, n

′
1n
′
2N2) = (gN1, g

′N2).

This proves that φ is surjective.
Therefore, we know that G/ ker(φ) = G/N1×G/N2. In particular, if we can show that ker(φ) = N1 ∩N2,

we are done. Now, x ∈ ker(φ) if and only if φ(x) = (xN1, xN2) = (eN1, eN2) = eG/N1×G/N2
. But this

happens if and only if both xN1 = eN1 and xN2 = eN2 which is equivalent to x ∈ N1 and x ∈ N2. But this
last statement is just the same as x ∈ N1 ∩ N2. In particular, since we did this with if and only if all the
way down, we have shown that ker(φ) = N1 ∩N2.

1In other words, (aN1, bN2)(cN1, dN2) = (acN1, bdN2).
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