FIELD EXTENSION REVIEW SHEET

MATH 435 SPRING 2011

1. POLYNOMIALS AND ROOTS

Suppose that k is a field. Then for any element x (possibly in some field extension,
possibly an indeterminate), we use

e k[z] to denote the smallest ring containing both k and x.
e k(x) to denote the smallest field containing both k and z.

Given finitely many elements, x1, . .., z,, we can also construct k[z1, ..., x,] or k(z1,...,x,)
analogously. Likewise, we can perform similar constructions for infinite collections of ele-
ments (which we denote similarly).

Notice that sometimes Q[z] = Q(z) depending on what z is. For example:

Exercise 1.1. Prove that Q[i] = Q(q).

Now, suppose K is a field, and p(z) € K|[x] is an irreducible polynomial. Then p(z) is
also prime (since K|z] is a PID) and so K|z|/(p(z)) is automatically an integral domain.

Exercise 1.2. Prove that K[z]/(p(z)) is a field by proving that (p(x)) is maximal (use the
fact that K[x] is a PID).

Definition 1.3. An extension field of k is another field K such that £ C K.

Given an irreducible p(z) € Klx] we view K[z]/(p(x)) as an extension field of k. In
particular, one always has an injection k¥ — Klz|/(p(x)) which sends a — a + (p(x)). We
then identify k& with its image in K[z]/(p(x)).

Exercise 1.4. Suppose that £ C F is a field extension and o € F is a root of an irreducible
polynomial p(x) € k[z]. Then prove that

k[z]/(p(x)) = klo] = k(a).
Note you have to prove two statements.

The previous exercise should be viewed as saying that
k[x]/(p(z)) is the smallest field extension of k containing a “generic” root of
p(z).
It is very important to note that if & and o are two roots, then k[a] 2 k[o/] because they are
both isomorphic to k[x]|/(p(x)), even though the two extensions might have totally different
elements. In particular, it is possible that « ¢ k[o/] even if a and o' are roots of the same
polynomial.

2. VECTOR SPACES
We recall the definition of a vector space over k.

Definition 2.1. A wvector space over k is an Abelian group V, under addition, with a
multiplication rule a.x € V for a € k and = € V, satisfying the following axioms for
z,y €V and a,b € k.

(i) a(z+y)=az+ay
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(ii)) (a+b).x =ax+bx
(iii) (ab).xz = a.(b.x)
(iv) lz ==

Exercise 2.2. Suppose that F' C K is a field extension. Prove that K is an F-vector-space
with the multiplication rule a.b = ab for a € F and b € K.

Definition 2.3. If V is a vector space over k, a basis for V over k is a set {x1,...,z,}
that is both linearly independent' and a spanning set?

It is a fact that if V has a finite basis over k, then all other bases are also finite and with
the same number of elements. This number of elements in called the dimension of V' over
k. If there is no finite basis, the dimension of V' over k is called infinity.

Exercise 2.4. Suppose that K is a field and that p(z) € Klz] is irreducible. Find a basis
for K[x]/(p(x)) over K. Prove that the set you found really is a basis.

3. EXTENSION DEGREE

Definition 3.1. Suppose that &k C K is a field extension. We define the degree of K over
k, denoted by [K : k| to be the dimension of K as a k-vector space. It might be that
[K : k] = oo. If [K : k] is not infinity, then we say that k C K is a finite extension.

Exercise 3.2. Prove the following.
(i) [R:Q] =
(i) [Q[v7] : ] =2

(iii) [Q[x]/(z® + 522 +10) : Q] = 5.

(iv) If K C L is a finite extension, and k C K C L is a subextension, then k¥ C K and
K C L are also finite.

One of the main tools for measuring extension degree is as follows:

Theorem 3.3. Suppose that F C K C L is a sequence of extension fields. Then
[L:F]=[L:K]-[K:F|.
Exercise 3.4. Use the previous theorem to prove the following.
(i) /3 is not contained in Q[3'/7].
(ii) v/3 is not contained in Q[3'/3,21/3].
i

)
(iii) The 7th root of two is not contained in the splitting field of 2° — 2 over Q.
(iv) If Fa is a subset of Fyn then d divides n.

4. ALGEBRAIC AND TRANSCENDENTAL ELEMENTS

Definition 4.1. Suppose that k C F is a field extension and a € E. Then « is called an
algebraic element over k if there exists a non-constant polynomial p(z) € k[z] such that
p(a) = 0. An element is called transcendental if it is not algebraic.

Remark 4.2. Sometimes we say that a number is algebraic or transcendental. Then it is
usually meant that £ = Q.

Exercise 4.3. Prove that every x € k is algebraic over k.

Theorem 4.4. If « is an algebraic element, then kla] = k(a) = k[x]/(p(x)) is a finite
extension of k. Conversely if kla] is a finite extension of k, then « is algebraic.

IThis means that if a1x1 + -+ aprn, =0, thena; =az =---=a, = 0.
2This means that every x € V can be written in the form a121 + ... anx, for some a; € k.
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Proof. Left to the reader, use previous exercises from this worksheet. For the second part,
you can use an idea similar to the proof of Proposition 4.6. ]

Definition 4.5. An extension of fields k C K is called algebraic if every element of K is
algebraic over k.

Proposition 4.6. If k C K is a finite extension of fields, then it is an algebraic extension.
In particular, if a is algebraic over k, then kla] is an algebraic extension.

Proof. For the first statement, choose o € K. Then consider the set
B, ={1,a',0? ..., a"}

For big enough n, B, is linearly dependent because K is a finite dimensional k-vector
space. Let n be the first integer such that B, is linearly dependent over k. Then o™ =
Mol + Mol + Xa? + - + \,_1a ! for some \; € k. But then we have constructed a
polynomial of which « is a root, namely

" — )\n_lxnfl — = )\11‘1 — Xo.

For the second statement, any 3 € k[a] is algebraic since k[a] is a finite extension of
k. O

Exercise 4.7. Suppose that k¥ C F is an extension field and § € FE is transcendental over
k. Then k[5] = k[z], the polynomials in = with coefficients in k.

5. SPLITTING FIELDS

Definition 5.1. Suppose that & is a field and p(x) € k[z] is any polynomial, irreducible or
not. A splitting field for p(x) over k is a field extension k C K such that:
(1) p(z) splits as an element of K[x]. In other words, if within K[z], p(z) factors into

a product of linear factors.
(2) There is no subfield L C K, such that both & C L and p(z) splits in L.

Theorem 5.2 (Existance and Uniqueness). Given any polynomial p(z) € k[x], there is
always a splitting field K O k for p(x) over k. Furthermore, any two such splitting field are
isomorphic.

Proof. See Rotman, Proposition 5.16 and 5.22. O

Exercise 5.3. Determine whether or not the following extensions are splitting fields.
(i) F3 C F3[z]/(z® + 1) for the polynomial x° + 1 € F3[x].
(i) Q C C for the polynomial 22 + 1 € Q[z].
(iil) Q@ € Q[v2] for the polynomial x2 — 2.
(iv) Q C Q[i5'/4] for the polynomial 2% — 5.

Exercise 5.4. Show that the splitting field for ") — z over ), has exactly p" elements.



