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MATH 435 SPRING 2011

1. Polynomials and roots

Suppose that k is a field. Then for any element x (possibly in some field extension,
possibly an indeterminate), we use

• k[x] to denote the smallest ring containing both k and x.
• k(x) to denote the smallest field containing both k and x.

Given finitely many elements, x1, . . . , xn, we can also construct k[x1, . . . , xn] or k(x1, . . . , xn)
analogously. Likewise, we can perform similar constructions for infinite collections of ele-
ments (which we denote similarly).

Notice that sometimes Q[x] = Q(x) depending on what x is. For example:

Exercise 1.1. Prove that Q[i] = Q(i).

Now, suppose K is a field, and p(x) ∈ K[x] is an irreducible polynomial. Then p(x) is
also prime (since K[x] is a PID) and so K[x]/〈p(x)〉 is automatically an integral domain.

Exercise 1.2. Prove that K[x]/〈p(x)〉 is a field by proving that 〈p(x)〉 is maximal (use the
fact that K[x] is a PID).

Definition 1.3. An extension field of k is another field K such that k ⊆ K.

Given an irreducible p(x) ∈ K[x] we view K[x]/〈p(x)〉 as an extension field of k. In
particular, one always has an injection k → K[x]/〈p(x)〉 which sends a 7→ a + 〈p(x)〉. We
then identify k with its image in K[x]/〈p(x)〉.

Exercise 1.4. Suppose that k ⊆ E is a field extension and α ∈ E is a root of an irreducible
polynomial p(x) ∈ k[x]. Then prove that

k[x]/〈p(x)〉 ∼= k[α] = k(α).

Note you have to prove two statements.

The previous exercise should be viewed as saying that
k[x]/〈p(x)〉 is the smallest field extension of k containing a “generic” root of
p(x).

It is very important to note that if α and α′ are two roots, then k[α] ∼= k[α′] because they are
both isomorphic to k[x]/〈p(x)〉, even though the two extensions might have totally different
elements. In particular, it is possible that α /∈ k[α′] even if α and α′ are roots of the same
polynomial.

2. Vector spaces

We recall the definition of a vector space over k.

Definition 2.1. A vector space over k is an Abelian group V , under addition, with a
multiplication rule a.x ∈ V for a ∈ k and x ∈ V , satisfying the following axioms for
x, y ∈ V and a, b ∈ k.:

(i) a.(x+ y) = a.x+ a.y
1
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(ii) (a+ b).x = a.x+ b.x
(iii) (ab).x = a.(b.x)
(iv) 1.x = x

Exercise 2.2. Suppose that F ⊆ K is a field extension. Prove that K is an F -vector-space
with the multiplication rule a.b = ab for a ∈ F and b ∈ K.

Definition 2.3. If V is a vector space over k, a basis for V over k is a set {x1, . . . , xn}
that is both linearly independent1 and a spanning set2

It is a fact that if V has a finite basis over k, then all other bases are also finite and with
the same number of elements. This number of elements in called the dimension of V over
k. If there is no finite basis, the dimension of V over k is called infinity.

Exercise 2.4. Suppose that K is a field and that p(x) ∈ K[x] is irreducible. Find a basis
for K[x]/〈p(x)〉 over K. Prove that the set you found really is a basis.

3. Extension degree

Definition 3.1. Suppose that k ⊆ K is a field extension. We define the degree of K over
k, denoted by [K : k] to be the dimension of K as a k-vector space. It might be that
[K : k] =∞. If [K : k] is not infinity, then we say that k ⊆ K is a finite extension.

Exercise 3.2. Prove the following.
(i) [R : Q] =∞.
(ii) [Q[

√
7] : Q] = 2.

(iii) [Q[x]/(x5 + 5x2 + 10) : Q] = 5.
(iv) If k ⊆ L is a finite extension, and k ⊆ K ⊆ L is a subextension, then k ⊆ K and

K ⊆ L are also finite.

One of the main tools for measuring extension degree is as follows:

Theorem 3.3. Suppose that F ⊆ K ⊆ L is a sequence of extension fields. Then

[L : F ] = [L : K] · [K : F ].

Exercise 3.4. Use the previous theorem to prove the following.
(i)
√

3 is not contained in Q[31/5].
(ii)
√

3 is not contained in Q[31/3, 21/3].
(iii) The 7th root of two is not contained in the splitting field of x5 − 2 over Q.
(iv) If Fpd is a subset of Fpn then d divides n.

4. Algebraic and transcendental elements

Definition 4.1. Suppose that k ⊆ E is a field extension and α ∈ E. Then α is called an
algebraic element over k if there exists a non-constant polynomial p(x) ∈ k[x] such that
p(α) = 0. An element is called transcendental if it is not algebraic.

Remark 4.2. Sometimes we say that a number is algebraic or transcendental. Then it is
usually meant that k = Q.

Exercise 4.3. Prove that every x ∈ k is algebraic over k.

Theorem 4.4. If α is an algebraic element, then k[α] = k(α) ∼= k[x]/〈p(x)〉 is a finite
extension of k. Conversely if k[α] is a finite extension of k, then α is algebraic.

1This means that if a1x1 + · · ·+ anxn = 0, then a1 = a2 = · · · = an = 0.
2This means that every x ∈ V can be written in the form a1x1 + . . . anxn for some ai ∈ k.
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Proof. Left to the reader, use previous exercises from this worksheet. For the second part,
you can use an idea similar to the proof of Proposition 4.6. �

Definition 4.5. An extension of fields k ⊆ K is called algebraic if every element of K is
algebraic over k.

Proposition 4.6. If k ⊆ K is a finite extension of fields, then it is an algebraic extension.
In particular, if α is algebraic over k, then k[α] is an algebraic extension.

Proof. For the first statement, choose α ∈ K. Then consider the set

Bn = {1, α1, α2, . . . , αn}
For big enough n, Bn is linearly dependent because K is a finite dimensional k-vector
space. Let n be the first integer such that Bn is linearly dependent over k. Then αn =
λ01 + λ1α

1 + λ2α
2 + · · · + λn−1α

n−1 for some λi ∈ k. But then we have constructed a
polynomial of which α is a root, namely

xn − λn−1x
n−1 − · · · − λ1x

1 − λ0.

For the second statement, any β ∈ k[α] is algebraic since k[α] is a finite extension of
k. �

Exercise 4.7. Suppose that k ⊆ E is an extension field and β ∈ E is transcendental over
k. Then k[β] ∼= k[x], the polynomials in x with coefficients in k.

5. Splitting fields

Definition 5.1. Suppose that k is a field and p(x) ∈ k[x] is any polynomial, irreducible or
not. A splitting field for p(x) over k is a field extension k ⊆ K such that:

(1) p(x) splits as an element of K[x]. In other words, if within K[x], p(x) factors into
a product of linear factors.

(2) There is no subfield L ( K, such that both k ⊆ L and p(x) splits in L.

Theorem 5.2 (Existance and Uniqueness). Given any polynomial p(x) ∈ k[x], there is
always a splitting field K ⊇ k for p(x) over k. Furthermore, any two such splitting field are
isomorphic.

Proof. See Rotman, Proposition 5.16 and 5.22. �

Exercise 5.3. Determine whether or not the following extensions are splitting fields.
(i) F3 ⊆ F3[x]/〈x5 + 1〉 for the polynomial x5 + 1 ∈ F3[x].

(ii) Q ⊆ C for the polynomial x2 + 1 ∈ Q[x].
(iii) Q ⊆ Q[

√
2] for the polynomial x2 − 2.

(iv) Q ⊆ Q[i51/4] for the polynomial x4 − 5.

Exercise 5.4. Show that the splitting field for x(pn) − x over Fp has exactly pn elements.


