HOMEWORK \#8 - MATH 3210,

FALL 2019

DUE TUESDAY, OCTOBER 28TH
4.4 \#1. Prove that if $r>0$ and $x>1$ then $\ln (x) \leq \frac{x^{r}-1}{r}$.

Hint: Use Cauchy's form of the Mean Value Theorem with $f(x)=\ln (x)$ and $g(x)=x^{r}$.
4.4 \#4. If f is a function which is differentiable on an open interval I containing 0 and $f(0)=0$, then prove that there is a c between 0 and x at which

$$
f(x)=\frac{f^{\prime}(c)}{c^{n-1}} \frac{x^{n}}{n}
$$

Hint: Apply Cauchy's Mean Value Theorem to $f(x)$ and $g(x)=x^{n}$.
4.4 \#5. Use the previous exercise and induction to prove that if f is n-times differentiable on an open interval I and containing 0 and if the k th derivative at 0 is zero, $f^{(k)}(0)=0$, for $k=0,1, \ldots, n-1$, then there is a c between 0 and x at which

$$
f(x)=f^{(n)}(c) \frac{x^{n}}{n!}
$$

4.4 \#8. Find the following limit if it exists.

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{3}}
$$

4.4 \#13. Find the following limit if it exists.

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{\sqrt{n}}
$$

5.1 \#1. Find the upper sum $U(f, P)$ and lower sum $L(f, P)$ if $f(x)=1 / x$ on $[1,2]$ where P is the partition of $[1,2]$ into 4 subintervals of equal length.
5.1 \#2. Prove that $\int_{0}^{1} x d x$ exists by computing $U\left(f, P_{n}\right)$ and $L\left(f, P_{n}\right)$ for the function $f(x)=x$ where P_{n} is a partition into n subintervals of equal length.
Hint: Use Exercise 1.2.9 and Theorem 5.1.8.
5.1 \#4. Prove that $\int_{0}^{a} x^{2} d x=\frac{a^{3}}{3}$ by expressing this integral as a limit of Riemann sums and finding the limit.
5.1 \#8. Suppose m and M are lower and upper bounds for f on $[a, b]$. Prove that

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq \bar{\int}_{a}^{b} f(x) d x \leq M(b-a)
$$

5.1 \#9. If k is a constant and $[a, b]$ is a bounded interval, prove that $f(x)=k$ is integrable and that

$$
\int_{a}^{b} f(x) d x=k(b-a) .
$$

