HOMEWORK \#7 - MATH 3210,

 FALL 2019DUE TUESDAY, OCTOBER 22ND
4.2, \#2. Using just the definition of the derivative, find the derivative of $\left(x^{2}+3 x\right)$.
4.2, \#3. Show how to derive the expression for the derivative of $\tan (x)$ if you the know the derivatives of $\sin (x)$ and $\cos (x)$.
4.2, \#8. Using Theorem 4.2.9, derive the expression for the derivative of $\arctan (x)$.
4.2, \#11. Is the function defined by

$$
f(x)=\left\{\begin{aligned}
x \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{aligned}\right.
$$

differentiable at 0 ? Is it continuous at 0 ? Justify your answers.
4.2, \#11(b). Is the function defined by

$$
f(x)=\left\{\begin{aligned}
x^{2} \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{aligned}\right.
$$

differentiable at 0? Justify your answer.
4.2, \#12. Is the function defined by

$$
f(x)=\left\{\begin{aligned}
x^{2} & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{aligned}\right.
$$

differentiable at 0? Justify your answer.
4.3, \#3. If $r>0$, prove that $\ln (y)-\ln (x) \leq \frac{y-x}{r}$ if $r \leq x \leq y$.
4.3,\#5. Prove that if f is a differentiable function on $(0, \infty)$ and f and f^{\prime} both have finite limits at ∞, then

$$
\lim _{x \longrightarrow \infty} f^{\prime}(x)=0
$$

Hint: Use the mean value theorem for very large values of a, b.
4.3, \#10. Suppose that f is a differentiable function on (a, b) and f^{\prime} takes on both positive and negative values on (a, b). Show that $f^{\prime}(c)=0$ for some $c \in(a, b)$.
Hint: If $f^{\prime}(x)>0$ and $f^{\prime}(y)<0$ for some $a<x<y<b$, the f has a maximum value on $[x, y]$ that is strictly between x and y. You have to do something similar if $y<x$.
4.3, \#11. Suppose that f is differentiable on (a, b), and if f^{\prime} takes on two values U and V on (a, b), then f^{\prime} takes on every value between U and V as well. This is the Intermediate Value Theorem for derivatives. Note that this does NOT mean that the derivative f^{\prime} of f is continuous.
4.3, \#12. Let f be differentiable on \mathbb{R}. Prove that if there is an $r<1$ such that $\left|f^{\prime}(x)\right| \leq r$ for all $x \in \mathbb{R}$, then $|f(x)-f(y)| \leq r|x-y|$ for all $x, y \in \mathbb{R}$.

