HOMEWORK \#6 - MATH 3210,

 FALL 2019
DUE TUESDAY, OCTOBER 15TH

3.3, \#2. Is the function $f(x)=1 / x^{2}$ uniformly continuous on $(0,1)$? Justify your answer.
3.3, \#7. Prove that if I is a bounded interval and f is an unbounded function defined on I, then f cannot be uniformly continuous.
3.3, \#8. Let f be a function defined on an interval I and suppose that there are positive constants K and r such that

$$
|f(x)-f(y)| \leq K|x-y|^{r}
$$

for $x, y \in I$. Prove that f is uniformly continuous on I.
3.3, \#9. Is the function $f(x)=\sin (1 / x)$ continuous on $(0,1)$? Is it uniformly continuous on $(0,1)$? Justify your answers.
3.3, \#10. Is the function $f(x)=x \sin (1 / x)$ continuous on $(0,1)$? Is it uniformly continuous on $(0,1)$? Justify your answers.
3.4, \#2. Prove that the sequence $\frac{1}{x^{2}+n}$ converges uniformly to 0 on \mathbb{R}.
3.4, \#6. Prove Theorem 3.4.6.
4.1, \#2. Find the limit and prove that your answer is correct.

$$
\lim _{x \longrightarrow 2} \frac{x^{2}+x-2}{x-1}
$$

4.1, \#7. If $f(x)=\sin (x) /|x|$, find $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$. Does $\lim _{x \rightarrow 0} f(x)$ exist?
4.1, \#10. Prove Theorem 4.1.7.
4.1, \#14. Give an appropriate definition for the statement $\lim _{x \rightarrow b^{-}} f(x)=-\infty$.

