HOMEWORK \#5 - MATH 3210,

FALL 2019

DUE TUESDAY, SEPTEMBER 24TH
2.5, \#1. Give an example of a nested sequence of bounded open intervals that does not have a point in its intersection.
2.5, \#2. Give an example of a nested sequence of closed but unbounded intervals which does not have a point in its intersection.
2.5, \#5. Which of the following sequences has a convergent subsequence. Justify your answer.
(a) $a_{n}=(-2)^{n}$.
(b) $a_{n}=\frac{5+(-1)^{n} n}{2+3 n}$.
(c) $a_{n}=2^{\left((-1)^{n}\right)}$.
2.5, \#7. For each of the following sequences, determine how many different limits of subsequences there are. Justify your answer.
(a) $\left\{1+(-1)^{n}\right\}$
(b) $\{\cos (n \pi / 3)\}$
(c) $\{1,1 / 2,1,1 / 2,1 / 3,1,1 / 2,1 / 3,1 / 4,1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots$ ' $\}$
2.5, \#8. Does the sequence $\sin (n)$ have a convergent subsequence? Why?
2.6, \#1. Find the lim sup and liminf for the following sequences.
(a) $a_{n}=(-1)^{n}$
(b) $a_{n}=(-1 / n)^{n}$
(c) $a_{n}=\sin (n \pi / 3)$
2.6, \#6. If $k \geq 0$ and $\limsup a_{n}$ is finite, prove that $\limsup \left(k a_{n}\right)=k \lim \sup \left(a_{n}\right)$.
2.6, \#7. If $a_{n} \geq 0$ and $b_{n} \geq 0$, prove that $\lim \sup \left(a_{n} b_{n}\right) \leq\left(\lim \sup a_{n}\right)\left(\lim \sup b_{n}\right)$.
3.1, \#1. If f is a function with domain $[0,1]$, what is the domain of $f\left(x^{2}-1\right)$?
3.1, \#4. Show that the function $f(x)=|x|$ is continuous on all of \mathbb{R}.

