HOMEWORK #5 – MATH 3210, FALL 2019

DUE TUESDAY, SEPTEMBER 24TH

2.5, #1. Give an example of a nested sequence of bounded open intervals that does not have a point in its intersection.

2.5, #2. Give an example of a nested sequence of closed but unbounded intervals which does not have a point in its intersection.

2.5, #5. Which of the following sequences has a convergent subsequence. Justify your answer.
(a) a_n = (-2)ⁿ.

(a)
$$a_n = (-2)^n$$
.
(b) $a_n = \frac{5+(-1)^n n}{2+3n}$.
(c) $a_n = 2^{((-1)^n)}$.

2.5, #7. For each of the following sequences, determine how many different limits of subsequences there are. Justify your answer.

- (a) $\{1 + (-1)^n\}$
- (b) { $cos(n\pi/3)$ } (c) { $1,1/2,1,1/2,1/3,1,1/2,1/3,1/4,1,1/2,1/3,1/4,1/5,\dots$ }

2.5, #8. Does the sequence sin(n) have a convergent subsequence? Why?

 $2.6,\,\#1.$ Find the \limsup and \liminf for the following sequences.

(a) $a_n = (-1)^n$ (b) $a_n = (-1/n)^n$ (c) $a_n = \sin(n\pi/3)$ **2.6,** #6. If $k \ge 0$ and $\limsup a_n$ is finite, prove that

 $\limsup(ka_n) = k\limsup(a_n).$

2.6, **#7.** If $a_n \ge 0$ and $b_n \ge 0$, prove that $\limsup(a_n b_n) \le (\limsup a_n)(\limsup b_n)$.

3.1, #1. If f is a function with domain [0, 1], what is the domain of $f(x^2 - 1)$?

3.1, #4. Show that the function f(x) = |x| is continuous on all of \mathbb{R} .