HOMEWORK \#4 - MATH 3210, FALL 2019

DUE TUESDAY, SEPTEMBER 17TH
2.3, \#1. Use the Main Limit Theorem to find

$$
\lim \frac{2 n^{3}-n+1}{3 n^{3}+n^{2}+6}
$$

2.3, \#6. Prove that a sequence $\left\{a_{n}\right\}$ is both bounded above and bounded below if and only if its sequence of absolute values $\left\{\left|a_{n}\right|\right\}$ is bounded above.
2.3, \#8. Prove that if $\left\{b_{n}\right\}$ is a sequence of positive terms and $b_{n} \longrightarrow b>0$, then there is a number $m>0$ such that $b_{n} \geq m$ for all n.
2.3, \#9. Prove part (d) of Theorem 2.3.6 from the text.

Hint: Use the previous exercise.
$\mathbf{2 . 3}, \# \mathbf{1 0}$. Prove part (f) of Theorem 2.3.6.
Hint: Use the identity

$$
x^{k}-y^{k}=(x-y)\left(x^{k-1}+x^{k-2} y+\cdots+y^{k-1}\right)
$$

2.4, \#4. Let $\left\{d_{n}\right\}$ be a sequence of 0 s and 1 s and define a sequence of numbers $\left\{a_{n}\right\}$ by $a_{n}=d_{1} 2^{-1} d_{2} 2^{-2}+\cdots+d_{n} 2^{-n}$.
Prove that this sequence converges to a number between 0 and 1 .
2.4, \#5. Let a_{n} be a series with positive terms. Let s_{n} be the sequence of partial sums of the a_{n}, that is:

$$
s_{n}=\sum_{k=1}^{n} a_{k}
$$

Prove that $\lim s_{n}=\infty$ or $\lim s_{n}=L$ for some some $L \in \mathbb{R}$. In particular, either way, the limit exists.
2.4, \#9. Prove that $\lim \frac{2^{n}}{n}=\infty$.

