HOMEWORK \#12 - MATH 3210,

FALL 2019

DUE TUESDAY, DECEMBER 3RD
6.4, \#2. Prove that the function $f(x)=\sum_{k=1}^{\infty} \frac{\sin (k x)}{2^{k}}$ is continuous on the entire real line.
6.4, \#10. Let $\left\{a_{k}\right\}$ be a non-increasing sequence of non-negative numbers which converges to 0 . Use Theorem 6.3.2 to show that the power series

$$
\sum_{k=0}^{\infty}(-1)^{k+1} a_{k} x^{k}
$$

converges uniformly on $[0,1]$, and hence converges to a continuous function on this interval.
6.4, $\# \mathbf{1 1}$. Use the preceeding exercise and Example 6.4.11 in the book to show that the alternating harmonic series

$$
\sum_{k=1}(-1)^{k+1} \frac{1}{k}
$$

converges to $\ln (2)$. Explain why Example 6.4.11 is not enough on its own.
6.5, \#4. What is the smallest n for which we can be sure that

$$
1+1+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}
$$

is within 0.001 of e ?
6.5, \#12. Use L'Hôpital's Rule to show that

$$
\lim _{x \rightarrow 0} \frac{e^{\left(-1 / x^{2}\right)}}{x^{n}}=0
$$

for every n.
6.5, \#13. Let

$$
g(x)=\left\{\begin{array}{cl}
e^{\left(-1 / x^{2}\right)} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

Show that g is infinitely differentiable on the real line and that all of its derivatives are equal to 0 and 0 . Argue that this means that g cannot be analytic at 0 .

