HOMEWORK \#1 - MATH 3210,

FALL 2019

DUE TUESDAY, AUGUST 27TH
1.1, \#4. What is the intersection of all open intervals containing the closed interval $[0,1]$. Justify your answer.
1.1, \#6. What is the union of all of the closed intervals contained in the open interval $(0,1)$. Justify your answer.
1.1, \#13. Prove that if $f: A \rightarrow B$ is a function which is one-to-one and onto, then f has an inverse function, that is, there is a function $g: B \longrightarrow A$ such that $g(f(x))=x$ for all $x \in A$ and $f(g(y))=y$ for all $y \in B$.
1.2, \#2. Prove that if $n, m \in \mathbb{Z}_{>0}$, then $m+n \neq n$. Hint: Use induction on n.
1.2, \#3. Use the preceeding exercise to prove that if $n, m \in \mathbb{Z}_{>0}, n \leq m$ and $m \leq n$, then $n=m$. This is the reflexive property of an order relation.
1.2, \#17. Prove the identity

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

1.2, \#19. Prove the well ordering principal for the natural numbers: each non-empty subset S of $\mathbb{Z}_{>0}$ contains a smallest element. Hint: Apply the induction axiom to the set

$$
T=\left\{n \in \mathbb{Z}_{>0} \mid n<m \text { for all } m \in S\right\}
$$

1.3, \#3. Prove that if \mathbb{Z} satisfies the axioms for a commutative ring, then \mathbb{Q} satisfies A 1 and M 1 .
1.3, \#8. Assume x, y, z are elements of an ordered field. You may use the results and axioms of section 1.3. Show that $x>0$ and $y>0$ implies $x y>0$.
1.3, \#11. Prove that the equation $x^{2}=5$ has no rational solution.

