
WORKSHEET #3 – MATH 3210

FALL 2018

DUE MONDAY SEPTEMBER 24TH

You may work in groups of up to 4. Only one worksheet is required per group.

We recall a definition.

Definition. Recall that a sequence {an} is called Cauchy if for every ε > 0, there exists some N > 0 so that
if m,n > N , we have that

|am − an| < ε.

1. Suppose that {an} is a sequence such that

|an+1 − an| <
1

2n

for all n. Show that {an} is Cauchy and hence convergent.

Solution: Suppose ε > 0 and choose N = log2(1/ε) + 1. Then suppose that n,m > N . Without loss of
generality suppose that n ≥ m. It follows that

|an − am|
= |an − an−1 + an−1 − · · ·+ am+1 − am|
≤ |an − an−1|+ |an−1 − an−2|+ · · ·+ |am+1 − am|
≤ 1

2n−1 + 1
2n−2 + · · ·+ 1

2m

= 1
2m ( 1

2n−1−m + 1
2n−2−m + · · ·+ 1/2 + 1)

≤ 1
2m ( 1

1−1/2 )

= 1
2m (2)

= 1
2m−1

where in the above, we are using our hypothesis and the fact that the geometric series 1 + r2 + r3 + · · · = 1
1−r .

Now since m > N = log2(1/ε) + 1, we have that

1

2m−1
<

1

2N−1
=

1

2log2(1/ε)
=

1

1/ε
= ε

which proves that {an} is Cauchy.

We now briefly discuss lim inf and lim sup. You can think of these as the infimum or supremum of the tail
of the sequence (respectively), but first we approach it as the book does.

Definition. Suppose {an} is a sequence. Define in = inf{ak | k ≥ n} and sn = sup{ak | k ≥ n}.

2. Suppose that {an} is a bounded sequence. Prove carefully that {in} is also bounded.

Solution: We know that there exists K such that K ≤ an for all n. Thus K ≤ inf{an}. Hence for any
n, we have the weaker statement that K ≤ inf{ak | k ≥ n}, and thus K ≤ in. In particular, in is bounded
below. Likewise we can find L so that an ≤ L for all N . Hence in ≤ inf{ak | k ≥ n} ≤ sup{an} ≤ L. Thus in
is bounded above as well.
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3. Now prove that {in} is non-decreasing. Hence it is convergent.

Solution: Note that we have the set containment

{ak | k ≥ n+ 1} ⊆ {ak | k ≥ n}
and so

in+1 = inf{ak | k ≥ n+ 1} ≥ inf{ak | k ≥ n} = in

which shows that {in} is non-decreasing. Note that a bounded above non-decreasing sequence of real numbers
is convergent.

By symmetry, one can argue that {sn} is non-increasing and bounded. Hence it is also convergent. With
this in mind, we define

lim inf an := lim in,
lim sup an := lim sn.

4. Suppose that {ank
} is a convergent subsequence of a bounded sequence an. Prove that snk

≥ ank
≥ ink

and conclude that
lim sup an ≥ lim ank

≥ lim inf an.

Hint: Since in converges, any of its subsequences also converge (to the same limit). Likewise with sn.

Solution: Since in = inf{ak | k ≥ n+ 1}, we see that in ≤ an. Likewise we see that an ≤ sn. Hence if we
take the same subsequence of in, an, sn we still have

ink
≤ ank

≤ snk
.

Since subsequences of convergent sequences converge (to the same thing), we have, taking limits, that

lim inf an = lim ink
≤ lim ank

≤ snk
= lim sup an

as desired.

See Theorem 2.6.5 for proof that lim sup an and lim inf an are in fact limits of subsequences of an. In other
words, they are the biggest possible and smallest possible limits of convergent subsequences.
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5. Suppose that lim sup an and lim sup bn are finite. Prove carefully that

lim sup(an + bn) ≤ lim sup an + lim sup bn.

Solution: For any two sets A and B, recall that A + B = {a + b | a ∈ A, b ∈ B}. Now, by Theorem
1.5.7(c) in the text, we know that

sup(A+B) = sup(A) + sup(B).

We consider the sets An = {ak | k ≥ n} and Bn = {ak | k ≥ n}.
{ak + bk | k ≥ n} ⊇ An +Bn

(note it’s really note going to be equal either, the right side contains terms like a3 + b7, the left side does not).
Hence, taking supremums we see that

sup{ak + bk | k ≥ n} ⊇ sup(An +Bn) = supAn +Bn.

Taking limits produces
lim sup(an + bn) ≤ lim sup an + lim sup bn

as desired.

6. Suppose that f : Z>0 −→ Q is a bijective function from the integers to the rational numbers. (Such
functions exist, google the fact that “the rational numbers are countable” if you are not convinced.) Define a
sequence an = f(n). Show that for each real number L ∈ R, there exists a subsequence ank

of an such that

lim
k
ank

= L.

Solution: Note the sequence {an} is already given to us. We need to choose a subsequence. Now, for any
ε > 0 (for example, for ε = 1/k), we have that (L− 1/k, L+ 1/k) contains infinitely many rational numbers.

We define our sequence ank
recursively. First n1. We choose n1 so that an1 = f(n1) ∈ (L− 1, L+ 1) (there

are infinitely many choices that work since all rational numbers are hit).
Now n2. Since (L− 1/2, L+ 1/2) also has infinitely many rational numbers, we can find a number n2 ≥ n1

so that an2
= f(n2) ∈ (L− 1/2, L+ 1/2) (note the condition that n2 ≥ n1 is important).

Now for nk. Suppose we have chosen n1 ≤ n2 ≤ · · · ≤ nk−1. Since (L− 1/k, L + 1/k) has infinitely many
rational numbers, we can find nk ≥ nk−1 so that ank

= f(nk) ∈ (L− 1/k, L+ 1/k).
This ank

is our subsequence. Now, choose ε > 0 and fix K = 1/ε. Suppose k ≥ K, then

ank
∈ (L− 1/k, L+ 1/k) ⊆ (L− 1/K,L+ 1/K) = (L− ε, L+ ε).

In other words, |ank
− L| < ε. This completes the proof.
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