QUIZ #6 – MATH 3210 FALL 2018

1. Answer the following questions. (2 points each)

(a) Give a precise definition of what it means that a function $f: D \to \mathbb{R}$ is continuous at some $a \in D$.

Solution: It means for every $\epsilon > 0$ there exists some $\delta > 0$ so that if $|x - a| < \delta$ and $x \in D$, then $|f(x) - f(a)| < \epsilon$.

(b) What is the intermediate value theorem?

Solution: Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function and that y is between f(a) and f(b). Then there exists some $x \in [a, b]$ so that f(x) = y.

(c) State precisely the Archimedean property of the real numbers.

Solution: It says for every real number $x \in \mathbb{R}$, there exists natural number N so that N > x.

It is also ok to say that for every real number x > 0, there exists a natural number N so that 1/N < x.

(d) State the triangle inequality for numbers $a, b \in \mathbb{R}$.

Solution: $|a + b| \le |a| + |b|$.

(e) Suppose that $\{a_n\}$ is a bounded sequence. Give a precise definition of $\limsup a_n$.

Solution: For each integer n, define $s_n = \sup\{a_k \mid k \ge n\}$. Then $\limsup a_n$ is defined to be

$\lim s_n$.

It would also be correct to say it is the maximal limit of a convergent subsequence of $\{a_n\}$.

2. Suppose that $f: D_f \to \mathbb{R}$ is a continuous function and $g: D_g \to \mathbb{R}$ is a continuous function. Set $D_{f \circ g} = \{x \in D_g \mid g(x) \in D_f\}$. We have the composition

$$f \circ g : D_{f \circ g} \to \mathbb{R}.$$

Prove carefully that $f \circ g$ is continuous. You may use any theorems from the book (except this one).

Solution: Here are two different solutions.

Option #1. Fix a point $a \in D_{f \circ g}$, we will show $f \circ g$ is continuous at a. Suppose that $a_n \to a$ is a convergent sequence in $D_{f \circ g}$. It is sufficient to show that we obtain a convergent sequence.

$$f(g(a_n)) \to f(g(a))$$

Now, we have the convergence $g(a_n) \to g(a)$ since $a_n \to a$ is a sequence in D_g and g is continuous. Then $f(g(a_n)) \to f(g(a))$ is also convergent by the same logic since f is continuous.

Option #2. Choose $a \in D_{f \circ g}$, we will prove that $f \circ g$ is continuous at a from the definition. Choose $\epsilon > 0$. Since f is continuous at g(a), there exists a $\delta > 0$ so that if $|y - g(a)| < \delta$ and $y \in D_f$, then $|f(y) - f(g(a))| < \epsilon$. Now, letting δ fill the roll of ϵ for the continuous function g, we have that there exists a $\gamma > 0$ so that if $|x - a| < \gamma$, then $|g(x) - g(a)| < \delta$. But then using what we'd already shown setting y = g(x), we have that

$$|f(g(x)) - f(g(a))| < \epsilon.$$