QUIZ #2 – MATH 3210 FALL 2018

- **1.** Consider the set $A = \{-3\} \cup (-1, 2]$ and the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.
- (a) Compute f(A). (4 points)

Solution: We observe that f(-3) = 9 and f((-1,2]) = [0,4]. Hence $f(A) = \{9\} \cup [0,4]$. (b) Compute $f^{-1}(A)$. (4 points)

Solution: This time $f^{-1}(\{-3\}) = \emptyset$. $f^{-1}((-1,2]) = [-\sqrt{2},\sqrt{2}]$. Hence $f^{-1}(A) = [-\sqrt{2},\sqrt{2}]$. Recall the following axioms for an ordered field F and arbitrary $x, y, z \in F$.

A1 $x + y = y + x$.	M3 $\exists 1 \in F$ such that $1 \neq 0$	O3 If $x \leq y$ and $y \leq z$ then
A2 $x + (y+z) = (x+y) + z$.	and $1x = x$.	$x \leq z$.
A3 $\exists 0 \in F$ such that 0 +	D $x(y+z) = xy + xz$.	O4 If $x \leq y$ then $x + z \leq$
x = x.	F If $x \neq 0$, then $\exists x^{-1} \in F$	y+z.
A4 For each $x \in F, \exists -x \in$	so that $xx^{-1} = 1$.	O5 If $x \leq y$ and $0 \leq z$, then
F with x + (-x) = 0.	O1 Either $x \leq y$ or $y \leq x$.	$xz \leq yz.$
M1 $xy = yx$.	O2 If $x \leq y$ and $y \leq x$ then	
M2 $x(yz) = (xy)z.$	x = y.	

2. Prove that if $x \leq y$ and then $-y \leq -x$ using only the axioms above. Please use complete sentences in your justification. (6 points)

Hint: You aren't allowed to multiply by -1 and flip inequalities, use O4 instead.

Solution: By A4, there exists -x and -y. We add both of these to the inequality $x \le y$ and get $x + (-x) + (-y) \le y + (-x) + (-y)$ by O4. Now we reorganize the two sides to get

 $-y = 0 + (-y) = x + (-x) + (-y) \le y + (-x) + (-y) = y + (-y) + (-x) = 0 + (-x) = -x$

where we used properties A3 and A4 on both sides of the inequality and also used A1 (and implicitly A2) on the right side. But this just says $-y \leq -x$, which is what we wanted.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be the function f(x) = 2x and let $A = \{2, 7\} \cup (0, 5]$. Find the greatest lower bound and least upper bound of the subset

$$f(A) \subseteq \mathbb{R}.$$

Solution: We first compute f(A). First $f(\{2,7\}) = \{4,14\}$ while f((0,5]) = (0,10]. Hence $f(A) = \{4,14\} \cup (0,10] = (0,10] \cup \{14\}.$

The greatest lower bound is 0 and the least upper bound is 14.