QUIZ #11 - MATH 3210 FALL 2018

1. Short answer questions (2 points each)

(a) What does $\sum_{k=2}^{\infty} (1/3)^k$ converge to?

Solution: If the sum was from 0 to ∞ , we'd have $\frac{1}{1-(1/3)} = 3/2$. However, we are missing the terms 1 + 1/3 = 4/3. Thus our answer is 3/2 - 4/3 = 1/6. Alternately, we could just take our sum and write it as $(1/9) \cdot \sum_{k=2}^{\infty} (1/3)^k = (1/9) \cdot (3/2) = 1/6$.

(b) State the first fundamental theorem of calculus.

Solution: Suppose [a, b] is a closed bounded interval and f is a function continuous on [a, b], differentiable on (a, b) with f' integrable on [a, b]. Then

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

In they leave off that f' is integrable take off a point (but if they instead say f' is continuous, that's ok).

(c) Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable with bounded derivative. Is it always integrable on [0, 1]?

Solution: Yes. It is continuous, the fact that the derivative is bounded is a red herring.

(d) Compute $\lim_{x \to 0} \frac{\sin(x) - x}{x^3}$.

Solution: Since the numerator and denominator are zero, we can use L'Hôpital's rule. Then we need to compute $\lim_{x \to 0} \frac{\cos(x)-1}{3x^2}$. The numerator and denominator are still zero, and so we need to compute $\lim_{x \to 0} \frac{-\sin(x)}{6x}$. Finally, we apply L'Hôpital's rule again to get $\frac{-1}{6}$.

(e) Suppose $f:(a,b) \to \mathbb{R}$ is a function and $c \in (a,b)$. Give a precise definition of the statement that $\lim_{x \to c} f(x) = -\infty$.

Solution: It means for every $K \in \mathbb{R}$, there exists $\delta 0$ so that if $|x - c| < \delta$ and $x \in (a, b)$, then f(x) < K.

Take off half a point if they forget the $x \in (a, b)$ hypothesis.

2. Consider the function $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=\int_1^x \frac{1}{t}dt$. Directly show the following.

(a) For $a, b \in (0, \infty)$, f(ab) = f(a) + f(b). (5 points)

Hint: Use the chain rule and the second fundamental theorem of calculus to compute the derivative of f(ax). Compare that it to the derivative of f(x). Finally, try plugging in x = b to evaluate a constant. Make sure to use complete sentences.

Solution: We know by the chain rule and fundamental theorem of calculus that $(f(ax))' = a \cdot \frac{1}{xa} = \frac{1}{x} = f'(x)$. Thus f(ax) = f(x) + C for some constant C, plugging in x = 1 we get that f(a) = f(1) + C = 0 + C = C. Hence f(ax) = f(x) + f(a) and plugging in x = b completes the proof.

Use your judgement in terms of points.

(b) Let $g(x) : \mathbb{R} \to (0, \infty)$ be the inverse function of the one from part (a). Prove that g'(x) = g(x). (5 points)

Hint: We derived a formula for the derivative of the inverse function. If you don't remember that formula, you can re-derive it using the identity x = f(g(x)).

Solution: We first recall that $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$. Since f'(x) = 1/x, we see that $(f^{-1})'(y) = \frac{1}{1/f^{-1}(y)} = f^{-1}(y)$ as desired.

Use your judgement in terms of points.