You may work in groups of up to 4 people. Only one assignment needs to be turned in per group, but make sure everyone’s name is on it.

The first part of this worksheet will describe the extended Euclidean algorithm. In other words, given integers a, b, at least one nonzero, this finds integers s and t so that

$$sa + tb = \gcd(a, b).$$

1. Suppose that $a = b$. What s and t can you pick so that
$$sa + tb = \gcd(a, b)?$$

2. Suppose that $b | a$. What s and t can you pick so that
$$sa + tb = \gcd(a, b)?$$

Recall that when doing the Euclidean Algorithm, we repeatedly use the fact that if $a = bq + r$, then $\gcd(a, b) = \gcd(b, r)$.

3. With notation as above, suppose we already found integers s', t' so that $s'b + t'r = \gcd(b, r)$. Derive formulas for s and t so that $sa + tb = \gcd(a, b)$.

$$s =$$

$$t =$$
4. Compute \(\gcd \) of 675 and 210 by running the Euclidean Algorithm. In this problem, fill in the columns labeled \(a, b \) and then fill in the \(\gcd \) column. I’ve even done the first line for you. In particular I computed \(675 = 3 \cdot 210 + 45 \). Note you are going to fill out the first two columns before you figure out the \(\gcd \). Ignore the \(s, t \) column for now.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(\gcd(a, b))</th>
<th>(s)</th>
<th>(t)</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>675</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Starting at the bottom line in the above table, find \(s \) and \(t \) so that \(sa + tb \) is the \(\gcd \). Fill out the \(s \) and \(t \) in the table. Make sure to use your formulas from 3. to find the \(s \) and \(t \) based on the values of the previous line. Check your work at each step (to make sure the \(s \) and \(t \) give you the \(\gcd \)) and put a checkmark in the corresponding column when you have done so.

6. Use any method you like (guess and check is ok) to find \(s \) and \(t \) so that \(sa + tb = \gcd(a, b) \) for the given values of \(a \) and \(b \).

 (i) 5, 7
 (ii) 9, 16
 (iii) 15, 49
 (iv) 10, 37
7. Write down a careful proof that if $sa + tb = 1$, the $sa \equiv_b 1$ (remember, \equiv_b means equivalent mod b). The number s is called an inverse of a mod b.

8. Compute the inverses of the following integers a mod the integer b. Check your answer carefully in each case. *(Hint: Don’t forget the work you did in 5.)*

(i) $a = 5, b = 7$
(ii) $a = 9, b = 16$

(iii) $a = 15, b = 49$
(iv) $a = 10, b = 37$

9. Solve the following congruences for x using what you did in 8.

(i) $5x \equiv_7 4$
(ii) $5x \equiv_{16} 3 - 4x$

(iii) $15x \equiv_{49} -1$
(iv) $-9x \equiv_{37} 1 + x$