You may work in groups of up to 4 people. Only one assignment needs to be turned in per group, but make sure everyone’s name is on it.

The first part of this worksheet will describe the extended Euclidean algorithm. In other words, given integers a, b, at least one nonzero, this finds integers s and t so that

$$sa + tb = \gcd(a, b).$$

1. Suppose that $a = b$. What s and t can you pick so that $sa + tb = \gcd(a, b)$?

Solution: Since the $\gcd = a = b$, you can pick $s = 1$ and $t = 0$, or many other things ($s = -3, t = 4...$)

2. Suppose that $b \mid a$. What s and t can you pick so that $sa + tb = \gcd(a, b)$?

Solution: Since the $\gcd = b$, you can choose $s = 0, t = 1$.

Recall that when doing the Euclidean Algorithm, we repeatedly use the fact that if $a = bq + r$, then $\gcd(a, b) = \gcd(b, r)$.

3. With notation as above, suppose we already found integers s', t' so that $s'b + t'r = \gcd(b, r)$. Derive formulas for s and t so that $sa + tb = \gcd(a, b)$.

$$s =$$

$$t =$$

Solution: We have two equations $a = bq + r$ and $s'b + t'r = \gcd(b, r)$. Solving the first equation for r we get $r = a - bq$. Plugging this into the second equation we get

$$\gcd(b, r) = s'b + t'(a - bq) = t'a + (s' - t'q)b.$$

But $\gcd(a, b) = \gcd(b, r)$ and so we can take $s = t'$ and $t = s' - t'q$.

4. Compute gcd of 675 and 210 by running the Euclidean Algorithm. In this problem, fill in the columns labeled a, b and then fill in the gcd column. I’ve even done the first line for you. In particular I computed $675 = 3 \cdot 210 + 45$. Note you are going to fill out the first two columns before you figure out the gcd. Ignore the s, t column for now.

<table>
<thead>
<tr>
<th>q</th>
<th>a</th>
<th>b</th>
<th>gcd(a, b)</th>
<th>s</th>
<th>t</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 3$</td>
<td>675</td>
<td>210</td>
<td>15</td>
<td>5</td>
<td>$-16 = (-1) - (5 \cdot 3)$</td>
<td>✓</td>
</tr>
<tr>
<td>$q = 4$</td>
<td>210</td>
<td>45</td>
<td>15</td>
<td>-1</td>
<td>$5 = 1 - (-1 \cdot 4)$</td>
<td>✓</td>
</tr>
<tr>
<td>$q = 1$</td>
<td>45</td>
<td>30</td>
<td>15</td>
<td>1</td>
<td>$-1 = 0 - (1 \cdot 1)$</td>
<td>✓</td>
</tr>
<tr>
<td>$q = 2$</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>

Solution: Filled in above

5. Starting at the bottom line in the above table, find s and t so that $sa + tb$ is the gcd. Fill out the s and t in the table. Make sure to use your formulas from 3. to find the s and t based on the values of the previous line. Check your work at each step (to make sure the s and t give you the gcd) and put a checkmark in the corresponding column when you have done so.

Solution: One solution is filled in above. Notice that if you start in the s and t line with a different pair of values, the s and t at the top will be different.

6. Use any method you like (guess and check is ok) to find s and t so that $sa + tb = \text{gcd}(a, b)$ for the given values of a and b.

(i) $5, 7$
(ii) $9, 16$

(iii) $15, 49$
(iv) $10, 37$

Solution: For (i), one set of valid values is $s = 3, t = -2$ since $(3 \cdot 5) + ((-2) \cdot 7) = 1$.
For (ii), one set of valid values is $s = -7, t = 4$ since $((-7) \cdot 9) + (4 \cdot 16) = 1$.
For (iii) one set of valid values is $s = -13, t = 4$ since $((-13) \cdot 15) + (4 \cdot 49) = 1$.
For (iv), one set of values values is $s = 26, t = -7$ since $(26 \cdot 10) + (7 \cdot 37) = 1$.

2
7. Write down a careful proof that if $sa + tb = 1$, then $sa \equiv_b 1$ (remember, \equiv_b means equivalent mod b). The number s is called an inverse of a mod b.

Solution: Suppose $sa + tb = 1$. Note that $(sa + tb) \equiv_b sa + 0 = sa$ using a result from the text in Section 4.1 (it is also correct to argue that tb has zero remainder modulo b and so $sa + tb$ has the same remainder as sa). Hence

$$1 \equiv_b sa + tb \equiv_b sa.$$

This completes the proof.

8. Compute the inverses of the following integers a mod the integer b. Check your answer carefully in each case. (*Hint:* Don’t forget the work you did in 5.)

(i) $a = 5, b = 7$
(ii) $a = 9, b = 16$

(iii) $a = 15, b = 49$
(iv) $a = 10, b = 37$

Solution: For (i), $s = 3 \equiv_7 -4$.
For (ii), $s = -7 \equiv_{16} 9$.
For (iii) $s = -13 \equiv_{49} 36$.
For (iv) $s = 26 \equiv_{37} -11$.

9. Solve the following congruences for x using what you did in 8.

(i) $5x \equiv_7 4$
(ii) $5x \equiv_{16} 3 - 4x$

(iii) $15x \equiv_{49} -1$
(iv) $-9x \equiv_{37} 1 + x$

Solution: For the (i), multiplying both sides by 3 we get $x \equiv_7 12 \equiv_7 5$.
For the (ii), moving the xs to the same side, we get that $9x \equiv_{16} 3$. Multiplying both sides by -7 we get $x \equiv_{16} -21 \equiv_{16} -5 \equiv_{16} 11$.
For (iii), multiplying both sides by (-13) we get $x \equiv_{49} 13$.
For (iv), we first move the xs to the same side to obtain that $-1 \equiv_{37} 10x$. Multiplying both sides by (-11) we obtain that $11 \equiv_{37} x$.

3