WORKSHEET #9 – MATH 1260 FALL 2014

DUE, TUESDAY DECEMBER 2ND

Our goal is to understand connectivity. We start with some definitions.

Definition. Suppose $W \subseteq \mathbb{R}^n$ is a set. A subset $A \subseteq W$ is called an open subset of W if $A = W \cap U$ for some open set $U \subseteq \mathbb{R}^n$.

Note that A can be an open subset of W even though A is not an open subset of \mathbb{R}^n .

Definition. Suppose $W \subseteq \mathbb{R}^n$ is a set. A subset $B \subseteq W$ is called a closed subset of W if $B = W \cap V$ for some closed set $V \subseteq \mathbb{R}^n$.

Note that B can be a closed subset of W even though B is not a closed subset of \mathbb{R}^n .

Definition. A set $W \subseteq \mathbb{R}^n$ is called *disconnected* if there is a subset $T \subseteq W$ where $T \neq W$ and $T \neq \emptyset$ and $T \neq \emptyset$

Definition. A set $W \subseteq \mathbb{R}^n$ is called *path connected* if for every two points $\vec{u}, \vec{v} \in W$ there is a continuous function $\vec{r} : [0,1] \to \mathbb{R}^n$ with $\vec{r}(t) \in W$ for all $t \in [0,1]$ and $\vec{r}(0) = \vec{u}$ and $\vec{r}(1) = \vec{v}$.

1. Suppose that $W \subseteq \mathbb{R}^n$ is such that W is a union of two non-empty sets $W = W_1 \cup W_2$, which are disjoint $W_1 \cap W_2 = \emptyset$, and where $W_1 = W \cap U_1$ for some open set $U_1 \subseteq \mathbb{R}^n$ and $W_2 = W \cap U_2$ for some open set $U_2 \subseteq \mathbb{R}^n$. Show that W is disconnected (the converse holds too but I won't ask you to prove it).

Hint: We need to construct T as in the definition of disconnected. Start with $T = W_1$ and show it is both open and closed as a subset of W.

2. Next suppose that $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous. If $W \subseteq \mathbb{R}^n$ is connected, show that f(W) is also connected.

Hint: Suppose instead that f(W) is disconnected and choose a nonempty $T \subsetneq f(W)$ that is both open and closed in f(W). Derive a contradiction.

It can be difficult to show that a given set is connected because you have to prove it is not disconnected (ie, prove a negative). Let us take on faith that [0, 1] is connected (or look up how to do it).

3. Suppose that $W \subseteq \mathbb{R}^n$ is path connected. Show that W is also connected.

Hint: Suppose that W is disconnected and let T be as in the definition above. Choose $\vec{u} \in T$ and choose $\vec{v} \in W \setminus T$. Let \vec{r} be a path between \vec{u} and \vec{v} . Then consider $\vec{r}^{-1}(T)$ and derive a contradiction.

4. Suppose that $W \subseteq \mathbb{R}^n$ is a connected and compact subset of \mathbb{R}^n . Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Prove that f(W) is a closed interval.

Hint: You know f(W) is closed and bounded and also connected. Use this.

5. There is a difference between connected sets and path connected sets. Consider the following "comb like space".

Let $W \subseteq \mathbb{R}^2$ be the union of the following sets.

- (1) First start with $(0,1] \times \{0\} = \{(a,0) \mid a \in (0,1]\}.$
- (2) Next consider the teeth of the comb $\{1/i\} \times [0,1] = \{(1/i,b) \mid b \in [0,1]\}$ for every integer i > 0. (there are infinitely many teeth)
- (3) Add one more tooth to the comb $\{0\} \times (0,1] = \{(0,b) \mid b \in (0,1]\}.$

Draw this set (note that the origin is in it), and then write a heuristic argument explaining why it is not path connected but why it is connected.