
WORKSHEET #5 – MATH 1260

FALL 2014

NOT DUE, OCTOBER 7TH

1. First we begin with short answer questions.

(a) Are the vectors 〈1, 2, 3〉 and 〈−3,−2,−1〉 perpendicular?

Solution: The dot product is not zero, so no.

(b) Find a vector that is perpendicular to 〈1, 2, 3〉.

Solution: 〈−3, 0, 1〉 would work, as would 〈0, 0, 0〉

(c) True or false, the projection of a vector onto the xy-plane is always a unit vector.

Solution: False. The vector could already be on the xy-plane of any length...

(d) Find the area of the parallelogram defined by the vectors 〈1, 2〉 and 〈−1, 3〉.

Solution: Taking the determinant yields 3− 2(−1) = 5. So the area is 5.

(e) Find a vector ~w so that if ~u = 〈1, 0,−1〉 and ~v = 〈0, 0, 2〉, then {~u,~v, ~w} form a linearly
dependent set.

Solution: I take ~w = ~u so that ~w = 1~u+ 0~v. It’s now linearly dependent. You could also
take ~w = ~u+ ~v.

(f) Find a vector ~w so that if ~u = 〈1, 0,−1〉 and ~v = 〈0, 0, 2〉, then {~u,~v, ~w} form a spanning set.

Solution: ~u and ~v already span the xz-plane so I can add ~w = ~j = 〈0, 1, 0〉.

(g) Setup, but do not evaluate, an integral which computes the arclength of t 7→ 〈cos(t), t sin(t), t2〉
for t from 2 to 3.

Solution:
∫ 3
2

√
(− sin(t))2 + (sin(t) + t cos(t))2 + (2t)2dt

(h) If an ant is climbing down a hill whose height is given by z = x2 + y2 + 3x cos(y2) and is at
position (1, 0), what direction should the ant climb to descend the hill fastest?

Solution: ∇z = 〈2x + 3 cos(y2), 2y − 6xy sin(y2)〉. Plugging in (1, 0) gives 〈2 + 3, 0〉 =

〈5, 0〉. So the ant should move in the opposite direction, towards 〈−1, 0〉 = −~i.

(i) Find the curvature of the space curve t 7→ 〈t, t2, t3〉 at the point 〈2, 4, 8〉.

Solution: This is a little messier. ~r′(t) = 〈1, 2t, 3t2〉 and ~r′′(t) = 〈0, 2, 6t〉. Since we
are interested in the point at t = 2, ~r′(2) = 〈1, 4, 12〉 and ~r′′(2) = 〈0, 2, 12〉. We compute
the cross product ~r′(2) × ~r′′(2) = 〈1, 4, 12〉 × 〈0, 2, 12〉 = 〈0,−12, 2〉. The length of this is√

144 + 4 = 1480.5. On the other had |r′(2)| =
√

1 + 16 + 144 = 1610.5. Hence the curvature

is κ = 1480.5

1611.5
.
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We continue 1.

(j) True or false, the normal vector is never a unit vector.

Solution: False, it is always a unit vector.

(k) Consider the following integral∫ 2

0

∫ √4−x2
−
√
4−x2

(x2 + y2 + 6)dydx

Set it up in polar coordinates (but do not evaluate it).

Solution: Note that we are only integrating a half-circle of radius 2. So we setup∫ 2

0

∫ π/2

−π/2
(r2(cos(θ))2 + r2(sin(θ))2 + 6)rdrdθ

(l) Compute the cross product 〈0,−1, 2〉 × 〈1, 0, 3〉.

Solution: 〈−3, 2, 1〉.

(m) Find the equation of the tangent plane to the surface z = x2 + y2 at the point (1, 1, 2).

Solution: The equation is z− 2 = fx(1, 1)(x− 1) + fy(1, 1)(y− 1) = 2(x− 1) + 2(y− 1).

(n) Suppose t 7→ ~r(t) is a parameterization of a space curve. True or false ~r′(t) · ~N(t) = 0.

Solution: True, we know the ~N(t) is perpendicular to the unit tangent vector ~T (t) which
points in the same direction as ~r′(t).

(o) Give an example of a surface z = f(x, y) where

lim
(x,y)−→(0,0)

f(x, y)

does not exist but the following do exist:

lim
x−→0

f(x, 0) and lim
y−→0

f(0, y).

Solution: z = xy
x2+y2

(p) Suppose that we are given a function f(x, y) with ∇f(1, 1) = 〈−1, 2〉 describing the height of
a hill. Further suppose that the xy-coordinates of a person is given by t 7→ p(t) = 〈g(t), h(t)〉.
If p(3) = 〈1, 1〉 and p′(3) = 〈0, 1〉, is the person ascending or descending the hill at time
t = 3?

Solution: Using the chain rule, (f ◦ p)′(3) = fx(1, 1)g′(3) + fy(1, 1)h′(3). Plugging this in
we see that (−1)(0) + (2)(1) = 2 so he is ascending.

(q) State the second derivative test for finding the maxes or mins of z = f(x, y).

Solution: If (a, b) is a point satisfying fx(a, b) = fy(a, b) = 0 and we set D = D(a, b) =
fxx(a, b)fyy(a, b)− (fxy(a, b))

2, and the second partial derivatives are continuous then
(1) If D > 0 and fxx(a, b) > 0, then f has a local min at (a, b).
(2) If D > 0 and fyy(a, b) < 0, then f has a local max at (a, b).
(3) If D < 0 then f(a, b) is not a local maximum or minimum (it is a saddle point).

(r) If ∇f = 〈3, 2〉, what is the directional derivative of f in the direction 〈
√
2
2 ,
√
2
2 〉?

Solution: 〈3, 2〉 · 〈
√
2
2 ,
√
2
2 〉 = 3

√
2

4 +
√

2
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2. The base of an aquarium of volume V is made of stone and the sides are glass. If stone costs 5
times as much as glass, what dimensions should the aquarium be (in terms of V ) in order to minimze
the cost of materials. Justify your answer.

Solution: We have sides of length a, b and height h. The volume is V = abh. The cost is
C = 2ah + 2bh + 5ab (two sides). We view V as a constant and we try to minimize C. If we solve
V = abh for h we get h = V/(ab). Plugging this into the cost equation we get C = 2aV/(ab) +
2bV/(ab) + 5ab = 2V/b + 2V/a + 5ab. We then try to find local mins and maxes. We take partial
derivatives

Ca = −2V/a2 + 5b
Cb = −2V/b2 + 5a

These equal zero when 2V = 5a2b and 2V = 5ab2. Since obviously we need a, b > 0 we have
5a2b = 5ab2 and hence a = b (this makes sense, the base should be a square to minimize cost).

Then going back to Ca = 0 = Cb equations we see that a = (2V/5)1/3 = b as well. Of course then

h = V/(ab) = V/(2V/5)2/3 = 52/3V 1/3

22/3
. This is our critical point. We need to verify that this is a min

(it has to be, as obviously making something really long and skinny will have huge costs) but let’s
use the second derivative test for fun!

Caa = 4V/a3

Cbb = 4V/b3

Cab = 5

and so we write D = 4V 2/(a3b3)− 25. Plugging in our values for a and b we get

D = 4V 2/(2V/5)2 − 25 = 25− 25 = 0.

so the second derivative test tells us nothing :-( We have to argue by logic as described above.

3. Find the local maximums and local minimums of the following surface

z = xy +
1

x
+

1

y

Solution: The partial derivatives are basically the same as those in 2.. You can work out the
details (there will just be a single local min at (1, 1)).
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4. Find the distance of the point (1, 2, 3) from the tangent plane to the surface z = x3 + y3 + xy at
(1, 1, 3).

Solution: First we compute the tangent plane to the surface at the specified point. The partials
are zx = 3x2 + y and zy = 3y2 + x. So plugging in (1, 1) and using the tangent plane formula we get

z − 3 = 4(x− 1) + 4(y − 1) or 4x+ 4y − z = 5.

For simplicity, let’s move the origin to (1, 1, 3). Then our tangent plane becomes 4x + 4y − z = 0
and the point (1, 2, 3) becomes (0, 1, 0). So we need to find that distance. The normal vector to the
tangent plane is 〈4, 4,−1〉. We project 〈0, 1, 0〉 onto that vector and we get

〈4, 4,−1〉 · 〈0, 1, 0〉
|〈4, 4,−1〉|

=
4√
17
.

which is slightly smaller than 1 (and that makes sense, because (1, 2, 3) is a distance of 1 from
(1, 1, 3).)

5. Reparameterize the space curve t 7→ 〈2t+ 1, 3t,−t〉 with respect to arc length.

Solution: Because this is a parameterization of a line and it is a constant rate, this is really easy
(no integrals required). Imagining this as the position of a particle, in one unit of time, the particle
moves 〈2, 3,−1〉 which is a vector of length

√
14. Hence dividing t by

√
14 gives us a parameterization

s 7→ 〈(2s/
√

14) + 1, 3s/
√

14,−s/
√

14〉.
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6. Find the volume of the solid bounded by the cylinder y2 + z2 = 4 and the planes x = 2y, z =
0, y = 4.

7. Sketch the region of integration of the following integral∫ 2

1

∫ lnx

0
xdydx

and then rewrite the integral as ∫ b

a

∫ g2(y)

g1(y)
xdxdy.

In particular, find the constants a, b and the functions g1(y) and g2(y).

8. Setup an integral to find the volume of the solid enclosed by the parabolic cylinders y = 1− x2,
y = x2 − 1 and the planes x+ y + z = 2 and 2x+ 2y − z + 10 = 0.
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