
F -SINGULARITIES AND FROBENIUS SPLITTING NOTES

KARL SCHWEDE

1. Introduction

These notes are from an unofficial topics course taught by Karl Schwede at
the University of Utah in the Fall of 2010.

2. Assumptions and notation

Throughout all rings will be Noetherian and excellent. The excellent as-
sumption can in many cases be removed, but for simplicity we will keep it.

Often rings will be assumed to contain a field of characteristic p > 0. If
R is a ring of characteristic p > 0, it possesses that absolute Frobenius map
F : R→ R. This is the map defined by F (r) = rp it is a map of rings. It thus
turns R into an R-module with a non-standard action. That is, r.x = rpx. We
denote this R-module by F∗R. Why? Well, if X = SpecR, then F : OX →
F∗OX is the structural map associated to Frobenius. There are other common
notations as well.

(a) 1R.
(b) R1/p if R is reduced.

You may notice the number 1 in front of the R, and wonder why it’s there.
The point is that you can iterate Frobenius F e = F ◦ F ◦ · · · ◦ F and have
induced module structures on R, denoted by F e

∗R
∼= eR ∼= R1/pe . It is useful

to observe that F e
∗ is an exact functor.

These different notations for the same thing have different advantages. R1/p

is useful because it allows one to easily distinguish elements from R and F∗R.
On the other hand, it can lead to confusing statements since if we view I1/p ⊆
R1/p as the ideal of R1/p made up of pth roots of I, then (I1/p)p = (Ip)1/p 6= I
(the latter is an ideal of R, where the two former are ideals of R1/p). I1/p also
is not a decent notation for modules.

Definition 2.1. Given an ideal (x1, . . . , xn) = I ⊆ R, we use I [pe] to denote

the ideal (xp
e

1 , . . . , x
pe

n ).

It is easy to see that this definition is independent of the choice of generators
of I since I [pe] can also be identified with the F e

∗R-ideal I · (F e
∗R).

Example 2.2. Consider the ring R = Fp[x1, . . . , xn]. Then F∗R is a free

R-module with basis {xλ1
1 x

λ2
2 . . . xλnn |0 ≤ λi ≤ p− 1}.

The object F∗R plays well with localization and completion.
1
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Lemma 2.3. Suppose that R is a ring of characteristic p > 0, m is a maximal
ideal and W is a multiplicative set. Then

(i) W−1(F∗R) ∼= F∗(W
−1R)

(ii) F∗R̂ ∼= F̂∗R (where the second is completion as an R-module).

where the ˆ denotes completion with respect to m.

Proof. The first statement follows sinceW−1(F∗R) = F∗((W
p)−1R) but (W p)−1R ∼=

W−1R since r/w = (rwp−1)/wp. For (ii), notice first that R̂ = lim←R/m
n =

lim←R/(m
n)[pe] since the two sequences of ideals are cofinal. Then

F̂ e
∗R = lim

←
(F e
∗R)/mn = lim

←
F e
∗ (R/(m

n)[pe]) = F e
∗ lim
←

(R/(mn)[pe]) = F e
∗ lim
←
R/mn = F e

∗ R̂.

�

Of course, there is another functor also, F ∗ which is defined by F ∗L =
L ⊗F∗OX (and then viewed as an F∗OX = OX module via the action on the
right). Unlike F∗, F

∗ is not exact in general (although it sometimes is, as we
will see). If L is a line bundle, then F ∗L = L p. One can see this by looking
at the transition functions and noticing that they are raised to powers.

Definition 2.4. A ring of characteristic p > 0 is said to be F -finite if the
Frobenius map is a finite map. In other words, if R is reduced, this means
that R1/p is a finite R-module.

Lemma 2.5. If R is F -finite, so is any quotient, localization, or completion
at a maximal ideal.

Proof. Suppose that R is F -finite, thus we have a surjective map of R-modules
⊕ni=1R → F∗R for some n. If W is a multiplicative set then tensoring with
W−1R will give us a new surjection. Completion is similar and quotienting
out by an ideal is also straightforward. �

Note that thus if you start with a variety over an algebraically closed (or per-
fect) field, anything you might ever end up working with is still F -finite (even if
you eventually move beyond having perfect residue fields) because k[x1, . . . , xn]
is F -finite (as long as k is an F -finite, eg perfect, field). The usual examples of
non-perfect fields, Fp(x) are still F -finite! Although Fp(x1, . . . , xn, . . . ) is not
F -finite.

Technical lemmas we won’t prove.

Lemma 2.6. [Kun76][Gab04] If R is F -finite then R is excellent and it has a
dualizing complex.

Remark 2.7. If you don’t know what a dualizing complex is, don’t worry about
it.

In other words, if you assume F -finite, you’re working in a pretty geometric
setting already.
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3. Flatness of Frobenius

Suppose that R is a noetherian ring of characteristic p > 0. In [Kun69b],
Kunz noticed the following: If F∗R is flat as an R-module and R ⊆ S is
unramified in codimension 1, then R ⊆ S is unramified.

Definition 3.1. An extension R ⊆ S is called unramified is for every q ∈ S
with p = q ∩R, one has that pS = qS and also that k(p) ⊆ k(q) is separable.

He then noticed that the condition that F∗R is a flat R-module is equivalent
to R being regular.

Theorem 3.2. [Kun69a] Suppose that R is a local ring of characteristic p > 0.
Then R is regular if and only if F∗R is flat as an R-module.

Proof. [Kun69a] We’ll only prove the (⇒) direction today. We do not assume

that R is F -finite. Suppose that R is regular, then R̂ is a power series ring
k[[x1, . . . , xn]] where k is the residue field of R. We have the following diagram:

R� _

α

��

β
// R̂ k[[x1, . . . , xn]]

� _

��

k1/p[[x1, . . . , xn]]
� _

��

R1/p γ
// R̂1/p k1/p[[x

1/p
1 , . . . , x

1/p
n ]]

Once we show that the right vertical column is flat, then we know that γ ◦ α
is also flat. This combined with the fact that γ is faithfully flat implies that
α is flat by [Mat89, Page 46].

So, we need to show that the right vertical column is flat. The inclusion

k1/p[[x1, . . . , xn]] ⊆ k1/p[[x
1/p
1 , . . . , x

1/p
n ]] is clearly flat since the target is free as

an R-module. The other inclusion is also free since k1/p is a flat k-module (this
requires a little bit of work, Kunz cites [Bou98, Chapter III, Section 5]). �

Thus on a regular variety X, F e
∗OX is a locally free sheaf (of F -finite rank

assuming that X is F -finite). In particular, F ∗ is an exact functor if and only
if X is regular.

Proposition 3.3. If X = SpecR is an F -finite regular affine scheme, then
F e : OX → F e

∗OX splits as a map of OX-modules.

Proof. First we claim that the statement is local. Indeed, consider the map
σ : HomR(F e

∗R,R)→ R defined by evaluation at 1. The map F e defined in the
statement of the proposition splits if and only if σ surjects. The surjectivity
of σ is a local property (since R is F -finite), so we can assume that R is
local. Thus F e

∗R is a flat and thus free R-module. Therefore there exist many
surjective maps φ : F e

∗R→ R (project onto one component) we just need to see
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that one of them is a splitting. Suppose φ(x) = 1 for some φ ∈ HomR(F e
∗R,R)

and some x ∈ F e
∗R, but then ψ( ) = φ(x · ) clearly is a splitting of F e. �

The splitting of Frobenius is a statement about the singularities of X. If
it occurs, it says something about the singularities being mild (we’ll see some
very effective criteria for checking this in a couple days).

Example 3.4. Let us compute F e
∗OX on X = P1

k, where k = k̄. We know
that F e

∗OX = OX(a1) ⊕ OX(a2) ⊕ · · · ⊕ OX(ape) because we are working on
P1. We also know that H0(X,F e

∗OX) = k so exactly one of the ai is equal to
zero (and the rest are negative), say a1 = 0. We will show that the rest of the
ai = −1, to see this consider

kp
e+1 = H0(X, (F e

∗OX(pe))) = H0(X, (F e
∗OX)⊗OX(1))

= H0(X,OX(a1 + 1)⊕OX(a2 + 1)⊕ · · · ⊕ OX(ape + 1)) ≥ k2+(a2+2)+···+(ape+2).

But the only way this will happen is if each ai = −1 for i ≥ 2 (since they all
already negative numbers).

For X = P1, we saw that OX → F e
∗OX is also going to split (because 1 goes

to 1). However, not all smooth varieties which have locally split Frobenius
have globally split Frobenius. Projective space does (as we’ll see, as do toric
varieties in general and Fano varieties in “most” characteristics).

Example 3.5. Suppose that X is a supersingular elliptic curve, see [Har77,
Chapter IV, Section 4, page 332], in other words F : H1(X,OX)→ H1(X,F∗OX)
is the zero map. Then X is not Frobenius split. To prove it, observe that
H1(X, ) is a functor. On the other hand, one can show that if X is an
ordinary elliptic curve, it is Frobenius split (more on this later).

Frobenius split varieties satisfy strong properties.

Lemma 3.6. Suppose that X is a variety whose Frobenius morphism splits.
Then for any ample line bundle L on X, H i(X,L ) = 0 for all i ≥ 0.

Proof. Note that OX → F e
∗OX splitting implies that L ⊗ OX → L ⊗

F e
∗OX = F e

∗ (OX ⊗ (F e)∗L ) = F e
∗L

pe also splits. We then have H i(X,L )→
H i(X,F e

∗L
pe) injects. But the right side vanishes by Serre vanishing for e� 0

so thus the left side vanishes too. �

Even though Kodaira vanishing fails in positive characteristic, it holds for
Frobenius split varieties.

Theorem 3.7. Suppose that X is a projective Frobenius split variety. Then
for any ample line bundle L on X, H i(X,ωX ⊗L ) = 0 for i > 0.

Proof. It’s not hard, but we’ll prove it a little later. �

We also briefly mention a link to projective normality.
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Definition 3.8. Suppose that Y ⊆ X is a closed subvariety of X. Given
a map φ : F e

∗OX → OX , we say that Y is φ-compatible if φ induces a map
φ̄ : F e

∗OY → OY by restriction.

Theorem 3.9. If φ : OPn → OPn is a splitting of Frobenius, then any φ-
compatible normal Y ⊆ Pn is embedded in Pn projectively normally.

Proof. It is sufficient to show that H0(Pn,OPn(i)) → H0(Y,OY (i)) is surjec-
tive for all i (see [Har77, Chapter II, Exercise 5.14]). Consider the following
commutative diagram:

H0(Pn,OPn(pei))
φ(i)

//

γ

��

H0(Pn,OPn(i))

δ
��

H0(Pn,OY (pei))
φ̄(i)

// H0(Pn,OY (i))

By Serre vanishing, γ is surjective and φ̄(i) is also surjective because it is
induced from a splitting. Thus δ is surjective as well. �

4. Flatness of Frobenius implies regular

Today, we’ll complete the proof that having a flat Frobenius map implies
that X is regular (a result of Kunz).

Theorem 4.1. Suppose that X is a scheme, then R is regular if and only if
F e
∗OX is flat as an OX-module for some e > 0.

Proof. We’ll need several lemmas, but let us sketch the proof first. The state-
ment is local so we may assume that X = SpecR where (R,m) is a local ring.
Write m = (x1, . . . , xn) where the xi are a minimal system of generators. Our
goal is to show that n = dimR.

First observe that it is harmless to replace e by ne for any integer n > 0.
Unlike what I said in class, the proof works fine for non-algebraically closed
residue fields.

Step 1. m[pe]/(m[pe])2 is a free R-module.
Step 2. Apply lemmas of Lech to conclude that lR(R/m[pe]) = pne for all
p ∈ N .
Step 3. Assume R is complete and write R = S/a = k[[x1, . . . , xn]]/a. Then

notice that lS(S/m
[pe]
S ) = pne for all e ≥ 0. But this implies that a = 0 and so

R = S. This actually completes the proof of step 3.

We begin with the proof of step 1.

F∗m
[pe]/(m[pe])2 = (m/m2)⊗R F∗R = (m/m2)⊗( R/m)F∗(R/m

[pe])

because of flatness of F∗R over R. But the right side is a free F∗(R/m
[pe])-

module. This implies that the (minimal set of) generators xp
e

1 , . . . , x
pe

n of m[pe]

are Lech-independent.
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Definition 4.2. That a sequence of elements f1, . . . , fn ∈ R is called Lech-
independent if for any a1, . . . , an ∈ R such that a1x

pe

1 + · · · + anx
pe

n = 0, then
ai ∈ m[pe].

We now begin step 2. For this, we begin with a Lemma.

Lemma 4.3. [Lec64, Lemma 3] If f1, . . . , fn are Lech-independent elements
and f1 ∈ gR for some g ∈ R, then g, f2, . . . , fn is also Lech-independent.
Furthermore, (f2, . . . , fn) : g ⊆ (f1, . . . , fn)

Proof. Write f1 = gh. Suppose a1g + · · ·+ anfn = 0 multiplying the equation
through by h implies that a1 ∈ (f1, . . . , fn) ⊆ (g, . . . , fn) (this also proves the
second statement of the theorem). Say a1 = b1f1 + · · · + bnfn. Plugging this
in, we get that

0 = (b1f1+· · ·+bnfn)g+a2f2+· · ·+anfn = b1gf1+(b2g+a2)f2+· · ·+(bng+an)fn.

Therefore, big + ai ∈ (f1, . . . , fn) ⊆ (g, f2, . . . , fn) for i ≥ 2 and so ai ∈
(g, f2, . . . , fn) for i ≥ 2 as desired. �

This lemma, combined with the fact that xp
e

1 , . . . , x
pe

n are Lech-independent,
proves that xα1

1 , . . . , x
αn
n are Lech-independent for αi ≤ pe (or basically for any

αi since we can make e bigger). We now need another Lemma.

Lemma 4.4. [Lec64, Lemma 4] If f1, . . . , fn are Lech-independent and f1 =
gh. Then

lR (R/(f1, . . . , fn)) = lR (R/(g, f2, . . . , fn)) + lR (R/(h, f2, . . . , fn)) .

Proof. First notice that

lR (R/(f1, . . . , fn)) = lR (R/(g, f2, . . . , fn)) + lR ((g, f2, . . . , fn)/(f1, . . . , fn))

.
However,

(g, f2, . . . , fn)/(f1, . . . , fn) = (gR+(f1, . . . , fn))/(f1, . . . , fn) ∼= R/((f1, . . . , fn) : gR)

. We certainly know that (f1, . . . , fn) : gR ⊇ (h, f2, . . . , fn) and we will show
the converse inclusion. Suppose then that ag = a1f1 + · · ·+ anfn, then (a1h−
a)g+a2f2 + · · ·+anfn = 0, so that the a1h−a ∈ (f2, . . . , fn) : g ⊆ (f1, . . . , fn).
But then a1h − a = b1f1 + · · · + bnfn = b1gh + · · · + bnfn which implies that
a ∈ (h, b2, . . . , bn). �

We will explain how this lemma implies (inductively) that lR(R/m[pe]) = pne

as desired. We will show that lR (R/(xα1
1 , . . . , x

αn
n )) = α1 · α2 · · · · · αn by

induction on
∑

i αi. The base case is obvious.
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If αi > 1, by the previous lemma, we know that

lR (R/(xα1
1 , . . . , x

αn
n ))

= lR
(
R/(xα1

1 , . . . , x
αi−1

i−1 , x
1
i , x

αi+1

i+1 , . . . , x
αn
n

)
+ lR

(
R/(xα1

1 , . . . , x
αi−1

i−1 , x
αi−1
i , x

αi+1

i+1 , . . . , x
αn
n )
)

= (α1 · · · · · αi−1 · 1 · αi+1 · · · · · αn) + (α1 · · · · · αi−1 · (αi − 1) · αi+1 · · · · · αn)

= α1 · · · · · αn
which completes the induction.

Finally, we do step 3 (which we already did). �

5. Criteria for local Frobenius splitting I (Fedder’s criteria)

Today, we’ll learn about a result called for the second statement, assume that
ag+a2f2+· · ·+anfn = 0, so Fedder’s criteria for local Frobenius splitting. We’ll
also explore Frobenius splitting of projective varieties vs Frobenius splitting
of graded rings.

First local behavior. Suppose that S is an F -finite regular ring such that F∗S
is a free S-module (for example, this happens if S is local). Write R = S/I.
Suppose that φ : F e

∗R→ R is R-linear. Consider the following diagram where
the vertical arrows are the natural quotients:

F e
∗S

��

ψ
// S

��

F e
∗R φ

// R

Because F e
∗S is free and thus projective, there exists a F e

∗S-module map ψ as
labeled in the diagram (which makes the diagram commute). This map is not
unique! If we further assume that S is local, then if φ is surjective, then so
must be ψ (since if ψ(S) ⊆ mS, then φ(S/I) ⊆ mS/I = mR ( R.

Lemma 5.1. With the notation as above, if R has a Frobenius splitting φ :
F e
∗R → R (ie, an R-linear map that sends 1 to 1), then there is a Frobenius

splitting ψ′ on S which also induces a (possibly different) Frobenius splitting
on R as in the diagram above.

Proof. We already saw the existence of a map ψ : F e
∗S → S which is surjective.

Suppose that ψ(x) = 1. Then consider the map ψ : F e
∗S → S defined by the

rule ψ′( ) = ψ(x · ), this is clearly a splitting. This map still induces a map
on R (defined by φ′( ) = φ(x̄ · )) and it is a splitting since ψ′ is). �

This suggests that in order to study the (possible) existence of F -splittings
of R it might be good to study the splittings on S which induce splittings
on R. First suppose that S is a regular local ring, let us study the maps
φ ∈ HomS(F e

∗S, S). To do this, I’d like to describe a little bit of duality for a
finite map (Frobenius being the finite map).
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In order to do this, we need a little bit of theory. So let’s quickly review
(Grothendieck) duality for a finite map.

Definition 5.2. Suppose that R is a local ring with a normalized dualizing
complex ω

q
R. Then the canonical module ωR of R is H− dimR(ω

q
R). A canon-

ical module on an arbitrary ring/scheme is a module whose localization is
isomorphic the canonical module at every prime/point.

Somewhat more explicitly, we can define the canonical module of R as fol-
lows. If X is a normal irreducible scheme of (essentially) finite type over a
field. One can define ωX as follows:

ωX =
(
∧dimXΩ1

X/k

)∗∗
.

Here the symbol ∗∗ means apply the functor HomR( , R) twice.

Definition 5.3. A divisor KX on a normal scheme X such thatOX(KX) ∼= ωX
is called a canonical divisor.

Canonical divisors are divisor classes on varieties over fields. This is much
more ambiguous on general schemes since ωX can be twisted by any line bundle
and still be a canonical module (we only defined it locally).

Theorem 5.4. [Har66] Let R ⊆ S be a finite inclusion of rings with dualizing
complexes and that ωR is a canonical module for R. Then:

(i) HomR(S, ωR) is a canonical module for S and if we are working with
varieties of finite type over a field, we may assume that the canonical
module constructed in this way for S, agrees with the one obtained by
taking wedge-powers of ΩX/k.

(ii) If N is an S-module, then we have an isomorphism of S-modules
HomR(N,ωR) ∼= HomS(N,HomR(S, ωR)) ∼= HomS(N,ωS).

Remark 5.5. The functor HomR(S, ) is often called f [ or f ! where f :
SpecS → SpecR is the induced map.

We will apply this theorem to the case of the Frobenius map.

Corollary 5.6. Suppose that X is a normal scheme of essentially finite type
over an F -finite field (or X = SpecR where R is an F -finite normal local
ring). Then H omOX (F e

∗OX ,OX) ∼= OX((1− pe)KX).

Proof. Let U denote the regular locus of X so that X \ U is codimension 2 or
higher. By basic facts about the reflexive sheaves, see for example [Har94], it
is enough to show this isomorphism with X replaced by U (in other words, we
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may assume that X is regular). We may write

H omOX (F e
∗OX ,OX)

∼= H omOX ((F e
∗OX)⊗OX(KX),OX(KX))

∼= H omOX ((F e
∗OX(peKX)),OX(KX))

∼= H omF e∗OX (F e
∗OX(peKX), F e

∗OX(KX))
∼= F e

∗OX((1− pe)KX).

The funny hypotheses at the start of this proof are there to insure that
sHomOX (F e

∗OX ,OX(KX)) is isomorphic to OX(KX) (and not some other
canonical module). �

This greatly restricts which varieties can be globally Frobenius split.

Corollary 5.7. Suppose that X is a Frobenius split variety, then H0(X,OX(−nKX)) 6=
0 for some n > 0. In particular, X cannot be projective and of general type.

Proof. If X is Frobenius split then φ ∈ HomOX (F e
∗OX ,OX) ∼= OX((1−pe)KX)

is non-zero for some φ. In fact, one can take e = 1 and so n = p− 1. �

Another interesting conclusion of this is the following.

Corollary 5.8. Suppose that X = SpecR where R is a normal F -finite local
ring. If OX((1−pe)KX) is locally free, then OX((1−pe)KX) is also locally free
and thus isomorphic to OX (this happens for example if R is Gorenstein). In
particular, H omOX (F e

∗OX ,OX) is a cyclic F e
∗OX-module. A φ : F e

∗OX → OX
which generates H omOX (F e

∗OX ,OX) is called a generating homomorphism.

Example 5.9. IfX = Spec k[x1, . . . , xn], then the map which sends (x1 . . . xn)p
e−1

to 1 and the other relevant monomials to zero, is a “generating map”. In the
local case, there are other generating maps as well (send some of the other
monomials to non-zero things).

Now we need some notation.

Definition 5.10. Suppose that S is a ring and I is an ideal. If ψ : F e
∗S → S

is an S-linear map, we say that I is φ-compatible if ψ(F e
∗ I) ⊆ I.

Remark 5.11. Clearly if I is ψ-compatible, then ψ induces a map on R/I.

Remark 5.12. Remember that for ideals I, J , the notation I : J is all the
elements r ∈ R such that rJ ⊆ I. In other words, it is the same as AnnR(J +
I/I).

Theorem 5.13. [Fed83][Fedder’s Lemma] Suppose that S is a regular local
ring and that R = S/I. The set of φ ∈ HomS(F e

∗S, S) which satisfy φ(F e
∗ I) ⊆ I

is equal to F e
∗ (I

[pe] : I) · HomS(F e
∗S, S) ∼= F e

∗ (I
[pe] : I) and those which induce

the zero map on R = S/I correspond to I [pe]. In conclusion, HomR(F e
∗R,R) ∼=

F e
∗ (I

[pe] : I)/(I [pe]).
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Proof. Let Φ ∈ HomS(F e
∗S, S) be a generating map. We will first show the

following lemma.

Lemma 5.14. For any ideals I, J ⊆ S, we have Φ(F e
∗J) ⊆ I if and only if

I [pe] ⊇ J .

Proof. The (⇐) direction is easier and we start with that. We claim that
φ(F e

∗ I
[pe]) ⊆ I. To see this, note that if I = (x1, . . . , xn), then I [pe] =

(xp
e

1 , . . . , x
pe

n ) and so if z ∈ I [pe], then z =
∑
aix

pe

i . Then Φ(z) = Φ(
∑
aix

pe

i ) =∑
xiφ(ai). The first direction then immediately follows.
Conversely, suppose that Φ(F e

∗ I) ⊆ J . We choose y1, . . . , ym to be a basis for
F e
∗S over S (we can obviously project on to each factor via multiplication of Φ

by elements of F e
∗S, and any map φ : F e

∗S → S is a sum of such projections).
So, we need F e

∗ I ⊆ ⊕J · yi = J · F e
∗S = F e

∗J
[pe]. In other words, I ⊆ J [pe] as

desired. �

I claim that a map φ : F e
∗S → S sends F e

∗ I into I if and only if φ ∈ F e
∗ (I

[pe] :
I) · Φ. To see this, write φ = z · Φ for some z ∈ F e

∗S = S. Then φ(F e
∗ I) ⊆ I

if and only if Φ(F e
∗ zI) ⊆ I which happens if and only if zI ⊆ I [pe], in other

words, if and only if z ∈ I [pe : I. Thus φ ∈ F e
∗ (I

[pe] : I) · Φ if and only if
φ(F e

∗ I) ⊆ I.
For the second statement, suppose that φ ∈ I [pe] ·Φ. Thus for every x ∈ F e

∗S,
φ(x) ∈ I (use the previous lemma with J = I [pe] I = I). Thus the induced
map on R = S/I is the zero map. Conversely, suppose that φ ∈ F e

∗ (I
[pe] : I) ·Φ

but φ /∈ I [pe] · Φ. Thus there is some x ∈ F e
∗S such that φ(x) /∈ I and so the

induced map on R = S/I is non-zero. �

Corollary 5.15 (Fedder’s criteria). If (S,m) is a F -finite regular local ring
and R = S/I, then R is F -split if and only if I [pe] : I is not contained in m[pe].

Proof. For φ̄ ∈ HomR(F e
∗R,R) (induced from φ : F e

∗S → S) to be surjective, it
must contain 1 in it’s image. This happens if and only if φ /∈ m[pe] ·Φ (where Φ
is in the previous proof). Such a map exists if and only if I [pe] : I * m[pe]. �

Remark 5.16. If I = (f) is a principal ideal, then I [pe] : I = (fp
e−1) which is

very easy to compute by hand. In many cases, the colon’s can be done via a
computer.

We now do several examples.

Example 5.17. The following rings are F -split.

(1) R = k[x1, . . . , xn]/(x1 · · · · · xn). Notice that (x1 · · · · · xn)p
e−1 *

(xp
e

1 , . . . , x
pe

n ) = m[pe].
(2) R = k[x, y, z]/(x2 − yz). Notice that (x2 − yz)p

e−1 has a term (yz)p
e−1

which does not appear in m[pe].
(3) R = k[x, y, z]/(x2− y2z) if the characteristic of k is not 2. In this case,

(x2−y2z)p−1 has a term
(

p−1
(p−1)/2

)
xp

e−1yp
e−1z

pe−1
2 and so the question is
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whether p divides the binomial coefficient. But it is clear that it does
not.

(4) R = k[x, y, z]/(x3 + y3 + z3) if the characteristic of k is 7 (check it
yourself). One can also check that it is not F -split for characteristics
2, 3, 5 and more generally if p = 2 mod 3.

Fedder’s Lemma suggests the following question.

Question 5.18. Given an arbitrary ring T with quotient R = T/I. Is it true
that every map φ ∈ HomR(F e

∗R,R) is induced from a map φ ∈ HomT (F e
∗T, T )?

The answer to this question is no as the following example demonstrates:

Example 5.19. Consider S = k[x, y, z], T = k[x, y, z]/(x2 − yz) and R =
k[x, y, z]/(x, y). The map ΦR : F∗R→ R which sends zp−1 to 1 and the other
zi to zero is induced by maps written as ΦS(w · ) where ΦS is the F∗S-module
generator of HomS(F∗S, S) discussed above and w is an element of the coset
(xy)p−1 + (xp, yp). We have to ask ourselves whether any such w can be inside
((x2 − yz)p−1) + (xp, yp), and the answer is clearly no.

6. Very basic facts about Frobenius splitting

First we discuss the difference between F -purity and F -splitting.

Definition 6.1. A ring R of characteristic p > 0 is said to be F -pure if for
every R-module M , the map M ⊗R→M ⊗ F∗R is pure.

Clearly an F -split ring is F -pure. Furthermore, if R is F -finite, then an
F -pure ring is also F -split (see The notion of F -purity is much better behaved
outside the F -finite context. However, we won’t be going there.

In an F -finite scheme, F -purity is used interchangeably with local F -splitting.
An F -splitting (without a “local” qualifier) is always viewed as a global state-
ment.

Here we list (and prove) a number of basic facts about Frobenius splittings,
again mostly in the local context.

Theorem 6.2. Suppose that R is an F -finite ring. Then the following hold:

(a) If R is Frobenius split (F -split) then R is reduced.
(b) If RQ is Frobenius split for some Q ∈ SpecR, then R is Frobenius split

in a neighborhood of Q.
(c) R is F -split if and only if Rm is F -split for every maximal ideal m if

and only if RQ is F -split for every prime ideal Q.
(d) If R ⊆ S is a split inclusion of rings and S is F -split, then R is also

F -split.
(e) If R is F -split, then for every minimal prime q ⊆ R, R/q is also F -

split.
(f) If φ : F e

∗R → R is any R-linear map and I and J are φ-compatible

ideals, then so is I + J , I ∩ J ,
√
I, and also I : a for any ideal a.
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7. (Weak/Semi)normality and Frobenius splitting

Today we’ll prove that a F -split ring is weakly normal and thus seminormal
(so first I’ll define these terms).

First we’ll talk about some hand-wavy geometry. Seminormality (and weak
normality) are ways of forcing all gluing of your scheme is as transverse as
possible. So first what is “gluing”?

Suppose that R is an F -finite reduced ring with normalization RN (domain
of finite type over a field is fine). The semi-normalization RSN (and weak
normalization RWN of R is a partial normalization of R inside RN). Since R
is F -finite it is excellent, and so all these extensions are finite extensions (ie,
we don’t have to worry about extreme funny-ness).

Definition 7.1. [AB69], [GT80], [Swa80] A finite integral extension of reduced
rings i : A ⊂ B is said to be subintegral (respectively weakly subintegral) if

(i) it induces a bijection on the prime spectra, and
(ii) for every prime P ∈ SpecB, the induced map on the residue fields,

k(i−1(P )) → k(P ), is an isomorphism (respectively, is a purely insep-
arable extension of fields).

Remark 7.2. A subintegral extension of rings has also been called a quasi-
isomorphism; see for example [GT80].

Remark 7.3. Condition (ii) is unnecessary in the case of extensions of rings of
finite type over an algebraically closed field of characteristic zero.

Definition 7.4. [GT80, 1.2], [Swa80, 2.2] Let A ⊂ B be a finite extension of
reduced rings. Define +

BA to be the (unique) largest subextension of A in B
such that A ⊂ +

BA is subintegral. This is called the seminormalization of A
inside B. A is said to be seminormal in B if A = +

BA. If A is seminormal
inside its normalization, then A is called seminormal.

Definition 7.5. [AB69], [Yan85], [RRS96, 1.1] Let A ⊂ B be a finite extension
of reduced rings. Define ∗

BA to be the (unique) largest subextension of A in B
such that A ⊂ ∗

BA is weakly subintegral. This is called the weak normalization
of A inside B. A is said to be weakly normal in B if A = ∗

BA. If A is weakly
normal inside its normalization, then A is called weakly normal.

Remark 7.6. Note the following set of implications.

Normal +3 Weakly Normal +3 Seminormal

Consider the following examples:

(i) The union of two axes in A2, Spec k[x, y]/(xy), is both weakly normal
and seminormal, but not normal (an irreducible node is seminormal as
well).

(ii) The union of three lines through the origin in A2, Spec k[x, y]/(xy(x−
y)), is neither seminormal nor weakly normal.
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(iii) The union of three axes in A3, Spec k[x, y, z]/(x, y) ∩ (y, z) ∩ (x, z), is
both seminormal and weakly normal. In fact, it is isomorphic to the
seminormalization of (ii).

(iv) The pinch point Spec k[a, b, c]/(a2b − c2) ∼= Spec k[x2, y, xy] is both
seminormal and weakly normal as long as the characteristic of k is not
equal to two. In the case that char k = 2, then the pinch point is semi-
normal but not weakly normal. Notice that if char k = 2 then the inclu-
sion k[x2, y, xy] ⊂ k[x, y] induces a bijection on spectra. Furthermore
the induced maps on residue fields are isomorphisms at all closed points.
However, at the generic point of the singular locus P = (y, xy), the in-
duced extension of residue fields is purely inseparable. This proves that
it is not weakly normal.

(v) R[x, y]/(x2 + y2) is seminormal and weakly normal (even though the
residue field changed).

A useful way to construct examples is the following lemma.

Lemma 7.7. Suppose that A is a ring, I ⊆ is an ideal and B is another ring
with a map φ : B → A/I. Then the pullback C of the diagram of rings

{A→ A/I ← B}
has the following properties.

(i) SpecC has a closed subscheme W that maps isomorphically to SpecB
via the induced map (from the pullback diagram).

(ii) The induced map C → A gives an isomorphism between (SpecC) \W
and (SpecA) \ (SpecA/I).

(iii) As topological spaces, SpecC is the pushout of the (dual) diagram of
Spec’s.

All of the examples from the previous remark can be constructed as pull-
backs in this way.

There are other characterizations of weakly normal and seminormal which
are of a more algebraic nature, and are often very useful. We’ll only prove the
second one.

Proposition 7.8. [LV81, 1.4] Let A ⊂ B be a finite integral extension of
reduced rings; the following are then equivalent:

(i) A is seminormal in B
(ii) For a fixed pair of relatively prime integers e > f > 1, A contains each

element b ∈ B such that be, bf ∈ A. (also see [Ham75] and [Swa80] for
the case where e = 2, f = 3).

Proposition 7.9. [RRS96, 4.3, 6.8] Let A ⊂ B be a finite integral extension
of reduced rings where A contains Fp for some prime p; the following are then
equivalent:

(i) A is weakly normal in B.
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(ii) If b ∈ B and bp ∈ A then b ∈ A.

Proof. First we show that (i) implies (ii). Suppose, for a contradiction, that
there is a b ∈ B such that bp ∈ A but b /∈ A. We will show that A[b] is
subintegral over A. Observe that for any element f ∈ A[b], we know that
fp ∈ A.

First suppose that P ∈ SpecA, we will show that there is exactly one prime
Q ∈ SpecA[b] lying over P (obviously there is at least one and at most finitely

many). Suppose that cd ∈
√
P · SpecA[b], then (cd)n ∈ P · SpecA[b] and so

even better, (cd)pn ∈ (P · SpecA[b]) ∩ A = P , thus cp ∈ P or dp ∈ P by the

primality of P . But if cp ∈ P then c ∈
√
P · SpecA[b] and likewise with d. This

proves that at least the spec’s line up. The residue field extensions are even
easier since AP/P ⊆ (A[b]√

P ·A[b]P
/
√
P · A[b]P ) is obviously a field extension

generated by a purely inseparable element (if the extension is non-trivial).
Conversely, suppose that A ⊆ B is not a weakly normal extension. Thus

we may assume that it is a weakly subintegral extension. Choose b ∈ B such
that b /∈ A. It is sufficient to show that bp

e ∈ A for some e > 0. But first we
make several reductions. Note that if condition (ii) holds on A ⊆ B, then it
also holds after localizing at a multiplicative subset. To see this, note that if
b ∈ B, (b/s) ∈ S−1B and (b/s)p ∈ S−1A, then by assumption sn(b/s)p ∈ A for
some n (we may assume n = pm). Thus (sm−1b)p ∈ A and sm−1b ∈ B so that
sm−1b ∈ A by assumption. Thus b/s ∈ A also. Consider the locus of SpecA
over which A is not weakly normal in B (this locus is closed – it’s just the
conductor of A ⊆ B), by localizing, we may assume that this is the maximal
ideal of the local ring A. Thus A ⊆ B induces a bijection on points of Spec
and, all residue field extensions are trivial or purely inseparable.

Furthermore, since the extension is already both weakly subintegral and also
weakly normal except at the maximal ideal, it is an isomorphism except at the
maximal ideal. It follows that the residue field extension at the maximal ideal
is purely inseparable. Now, consider the pull-back C of the following diagram.

{B → B/mB ← A/mA}

This pullback C agrees with A except at the origin possibly (and by the uni-
versal property of pull-backs, we have A ⊆ C). However, by (ii), the extension
is seminormal and since A ⊆ C is clearly subintegral, must be an isomorphism.
Choose b ∈ B, then b̄p

e ∈ A/mA for some e > 0, thus bp
e ∈ C for that same

e > 0. �

Theorem 7.10. [HR76] If R is F -split, then it is weakly normal.

Proof. Suppose that r ∈ RN and rp ∈ R. We have the splitting φ : F e
∗R→ R

which sends 1 to 1. Thus φ(rp) = rφ(1) = r so that r ∈ R as well. �

We now prove a partial converse in the one-dimensional case. A special case
of this can be found in [GW77]. First we need a lemma.
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Lemma 7.11. If K ⊆ L is a finite separable extension of fields, then any map
φ : F e

∗K → K uniquely extends to a map φ̄ : F e
∗L→ L.

Proof. Left to the exercises. �

Remark 7.12. In fact if K ⊆ L is not separable, then the only map F e
∗K → K

which extends to a map F e
∗L→ L is the zero map.

Theorem 7.13. If R one dimensional, F -finite and weakly normal with a
perfect residue field, then it is F -split.

Proof. In this proof, we will effectively classify one dimensional F -split varieties
with perfect residue fields. It is harmless to assume that R is local with
maximal ideal m and residue field k. Let RN denote the normalization of R.
We may write RN = R1 ⊕ · · · ⊕ Rm where each Ri is a semi-local ring with
maximal ideals mi,1, . . . ,mi,ni and residue fields ki,1, . . . , ki,ni (each of which is
a finite, and thus separable, extension of k).

We also have the pullback diagram

{RN = R1⊕ · · · ⊕Rm → (R1/m1)⊕ · · · ⊕ (Rm/mm) = k1,1⊕ · · · ⊕ km,nm ← k}
The pullback C of this diagram is an extension ring of R. It is also clearly a
subintegral extension of R so R = C. Thus we will show that C is F -split.
Choose a map φ : F e

∗k → k that is non-zero. On each ki,ni , this map extends
to a map φi,ni : F e

∗ki,ni → ki,ni . Because each Ri is a semi-local regular ring, by
Fedder’s Lemma, each φi,ni : F e

∗Ri/(∩tmi,t) → Ri/(∩tmi,t) extends to a map
ψi,ni : F e

∗Ri → Ri. These maps then “glue” to a map on C. �

Based on the previous result, it is natural to ask whether every φ ∈ HomR(F e
∗R,R)

extends to a map on the normalization? We will show that the answer is yes,
but first we show a result about the conductor.

Proposition 7.14. [BK05, Exercise 1.2.E] Given a reduced F -finite ring R
with normalization RN , the conductor ideal of R in RN is φ-compatible for
every φ ∈ HomR(F e

∗R,R).

Proof. The conductor ideal I can be defined as “the largest ideal I ⊆ R that
is simultaneously an ideal of RN”. It can also be described as

I := AnnRR
N/R = {x ∈ R|xRN ⊆ R}.

Following the proof of [BK05, Proposition 1.2.5], consider φ ∈ HomR(F e
∗R,R).

Notice, that by localization, φ extends to a map on the total field of fractions
(which contains RN). We will abuse notation and also call this map φ (since
it restricts to φ : F e

∗R → R). Now choose x ∈ F e
∗ I and r ∈ RN . Then

φ(x)r = φ(xrp
e
) ∈ φ(F e

∗R) ⊆ R. Thus φ(x) ∈ I as desired. �

Proposition 7.15. [BK05, Exercise 1.2.E(4)] For a reduced F -finite ring R,
every map φ : F e

∗R → R, when viewed as a map on total field of fractions,
restricts to a map φ′ : F e

∗R
N → RN on the normalization.



16 KARL SCHWEDE

Proof. We follow the hint for [BK05, Exercise 1.2.E(4)]. For any x ∈ RN ∈
K(R), we wish to show that φ(x) ∈ RN . First we show that we can reduce to
the case of a domain. We write R ⊆ K(R) = K1 ⊕ · · · ⊕ Kt as a subring of
its total field of fractions. Since each minimal prime Qi of R is φ-compatible,
it follows that φ induces a map φi : F e

∗R/Qi → R/Qi for each i. Notice
that the normalization of SpecR is a disjoint union of components (each one
corresponding to a minimal prime of R), and the ith component is equal to
Spec(R/Qi)

N . Thus, since we are ultimately interested in φ′ restricted to each
(R/Qi)

N , it is harmless to assume that R is a domain.
Suppose that I is the conductor and consider Iφ(x). For any z ∈ I, zφ(x) =

φ(zp
e
x) ∈ φ(F e

∗ I) ⊆ I (notice that zp
e
x ∈ I since I is an ideal of RN).

More generally, zφ(x)m = zφ(x)(φ(x))m−1 ⊆ I(φ(x))m−1 which implies that
Iφ(x)m ⊆ Iφ(x)m−1, and so by induction Iφ(x)m ⊆ I ⊂ R for all m > 0. This
implies that for every c ∈ I ⊆ R we have that cφ(x)m ∈ I ⊆ R. Therefore
φ(x) is integral over R by [HS06, Exercise 2.26(iv)]. �

In particular, if R is F -split, then its normalization is also F -split. This
proof implies the following more general result.

Theorem 7.16. An F -finite weakly normal one-dimensional local ring is F -
split if and only if every residue field extension of R ⊆ RN is separable.

Proof. Suppose that (R,m) is the local ring in question. If every residue field
extension of R in RN is separable, then the proof of Theorem 7.13 implies that
R is F -split.

Conversely, if R is F -split, then there exists a surjective map φ : F∗R → R
which extends to a map φ̄ : F∗R

N → RN and which is compatible with I,
the conductor ideal of R ⊆ RN (note that the induced map on R/I is non-
zero). Since R is local and weakly normal, I is a radical ideal and thus I = m.
Furthermore, I is a radical ideal on RN and so it is a finite intersection of
maximal ideals. In particular, the map φ restricted to R/I = R/m = k extends
to a map on the direct sum of its residue field extensions RN/I = k1⊕· · ·⊕kn.
In particular, it extends to each ki. But we know the map φ/m : F∗k → k is
non-zero, and since it extends to a map F∗ki → ki it follows that each ki is a
separable extension of k. �

8. Frobenius splittings of projective varieties and graded rings

Given a projective variety X with a ((very) ample) Cartier divisor A, we
can construct the section ring

S := ⊕n≥0OX(nA).

Likewise, given an OX-module M , we can construct M := ⊕n≥0M (n) where

M̃ = M (see for example [Har77]).
If L is a very ample divisor corresponding to an embedding into Pn with

associated section ring S, then S may or may not agree with the affine cone of
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X (in Pn). If X is normal, then the affine cone and SpecS agree if and only
if the embedding is projectively normal. However, if L is sufficiently ample,
then the two rings agree.

If X is an F -finite scheme, we can consider F e
∗OX and the associated module

M := ⊕n≥0(F e
∗OX)(n) and compare it with F e

∗S.

Question 8.1. Is M isomorphic to F e
∗S as a graded S-module?

We’ll answer this question with an example.

Example 8.2. Consider X = P1
k, k = k̄ with the usual ample divisor OX(1).

In this case, M = ⊕n≥0F
e
∗OX(npe) which is quite different from F e

∗S =
⊕n≥0F

e
∗OX(n) (in F e

∗S, some graded pieces are k-vector spaces of dimension
p).

One should note that F e
∗M is not a Z-graded S-module. It is instead a

Z[1/pe]-graded S-module. By [F e
∗M ]n=0 mod Z we mean the direct summand

of F e
∗M with integral coefficients.

With this in mind.

Lemma 8.3. Given a saturated S-module M corresponding to a coherent sheaf
M , we have an isomorphism of S-modules [F e

∗M ]n=0 mod Z ∼= ⊕n≥0(F e
∗M )(n).

This yields the following interesting result.

Proposition 8.4. Suppose that X is an F -finite F -split scheme, and L is
any line bundle. Then the section ring

S := ⊕i≥0H
0(X,L i)

is also Frobenius split.

Proof. We have the following splittings for all i ≥ 0

L i → F∗L
ipe → L i

where the composition is an isomorphism and the first map is Frobenius. This
implies that S → [F∗S]n=0 mod Z splits. But [F∗S]n=0 mod Z → F∗S also clearly
splits. Composing these splittings gives the desired result. �

The converse to the previous proposition also holds if L is ample.

Theorem 8.5. Suppose that X is an F -finite F -split scheme, L is an ample
line bundle, and S is the section ring of X with respect to L . If S is Frobenius
split, then so is X.

We will prove this in stages. The first stage allows us to assume that L is
(very very) ample (which isn’t strictly necessary, but it is harmless and easy
regardless).

Lemma 8.6. If S is a Frobenius split graded ring, then any veronese subring
is also Frobenius split.
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Proof. Suppose that S(n) is the nth veronese subring of S. The map S(n) ⊆ S
is clearly split, thus S(n) is Frobenius split as well. �

Remark 8.7. If S(n) is Frobenius split and p does not divide n, then S is also
split as we will see later (the Veronese map is étale in codimension 1 in this
case).

Lemma 8.8. If S is a Frobenius split graded ring, then S has a “graded”
Frobenius splitting.

Proof. To define a graded Frobenius splitting, we first have to remind ourselves
what the grading on F∗S is. Remember, F∗S is Z[1/p]-graded, which makes the
Frobenius map S → F∗S a degree preserving graded map. A graded splitting
is thus going to be a graded (degree preserving) map F∗S → S that sends 1 to
1. Since S is split, there are obviously plenty of (possibly non-graded) maps
φ : F∗S → S which sends 1 to 1. We simply have to find a graded such map.

On the other hand, we have the evaluation-at-1 map HomS(F∗S, S) → S.
Because S is F -finite, the module Z[1/p]-graded HomS(F∗S, S) is generated
over S0 by graded but degree shifting maps F∗S → S. So suppose φ is an
arbitrary splitting. We can write φ = φ0 + · · · + φn where φn are degree
shifting maps and φ0 is degree preserving (this is a basic commutative algebra
fact, a proof can be found in [BH93, Section 1.5]). It is clear that φ0(1) = 1
because φ(1) equals 1 and none of the other φi(1) can possibly land in the
correct degree. Thus φ0 is our desired degree preserving splitting. �

Proof of Theorem 8.5. We may assume that L is very (very) ample and so
our ring standard graded (generated in degree 1). We have the following
composition

S → [F∗S]n=0 mod Z → F∗S

By the previous lemma, this composition has a degree preserving graded split-
ting. Thus S → [F∗S]n=0 mod Z also has a degree preserving graded splitting.

Thus OX = S̃ → F̃∗S = F∗OX also splits (as desired). �

Finally, let us give an example to elliptic curves. We have already seen that
a supersingular elliptic curve cannot be F -split (ie, an F -split elliptic curve
must be ordinary), we will now prove the converse.

First we recall that H omX(F e
∗OX , ωX) ∼= ωX (as we did this before, this

was non-canonical) for X a variety over an algebraically closed (or even F -
finite) field. Thus, applying the functor H omX( ,OX) to F : OX → F∗OX
gives us a map F e

∗ωX → ωX (sometimes called the trace map).

Proposition 8.9. Suppose that X is an ordinary 1elliptic curve, then X is
F -split.

1Ordinary means that F : H1(X,OX)→ H1(X,OX) is injective.
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Proof. We know that H1(X,OX) → H1(X,F∗OX) is injective. Serre-duality
tells us that H0(X,F∗ωX) → H0(X,ωX) is surjective (where this map is in-
duced by what we called the trace map above, one can see this via Grothendieck
duality or by a degenerating spectral sequence argument). But on an elliptic
curve, ωX ∼= OX so that we have a map φ : F∗OX → OX that is surjective on
global sections. In particular, there is a global section of F∗OX which is sent
to 1 by φ. This element is just a unit, and so by rescaling, we can assume that
φ sends 1 to 1 and is thus a splitting. This means �

We also do an example of these ideas for Pn.

Example 8.10. Suppose that X = Pnk where k = k̄. For n = 1 we already
computed F∗OX . Let us at least show that F e

∗OX is a direct sum of line
bundles for n > 1 (this is an old result due to Hartshorne). Let S denote the
section ring with respect to the usual O(1) (so that S = k[x0, . . . , xn]. We have
the graded module M := ⊕n≥0(F e

∗OX)(n) which we know is a summand of
F e
∗OS/ However, F e

∗OS is a free S-module, which implies that M is projective
and thus also a free S-module because M is graded (see for example [BH93,
Proposition 1.5.15(d)]). So write M = ⊕S(i) for various i. Therefore F e

∗OX =

M̃ = ⊕S̃(i) = ⊕OX(i). In fact, the same result also holds for F∗L for any
line bundle L = OX(n) on X = Pn. The proof is the same.

We also give an example related to projective normality. Recall that on the
first day of class we showed that if Z ⊆ Pn is compatibly Frobenius split in
X = Pn, then it’s embedding is projectively normal (meaning in this case that
H0(X,OX(i)) → H0(Z,OZ(i)) is surjective for all i, this always happens for
a good enough veronese). We will prove a partial converse to this statement.

Proposition 8.11. Suppose that Z is a Frobenius split variety embedded (pro-
jectively normally) in X = Pn. Then Z is compatibly Frobenius split in
X = Pn.

Proof. In fact, we will show that any Frobenius splitting of Z extends to one on
Pn. Fix φ : F e

∗OZ → OZ to be a map. This induces a graded degree-preserving
map Φ : ⊕H0(X, (F e

∗OZ)(i)) → R on the section ring R = ⊕H0(X,OZ(i))
as we’ve seen. However, because of the projective normality assumption, R
is a quotient of S = ⊕H0(X,OX(i)) (this means that the affine cone and
the section ring coincide). But S is a polynomial ring and so a graded
version of the proof of Fedder’s Lemma implies that Φ extends to a map
Φ̄ : ⊕H0(X, (F e

∗OX)(i)) → S (and we may assume that this map is also
graded and degree preserving). Using the ˜ operation gives us our splitting
on X which is compatible with the one on Z. �

We’ll later see that Frobenius splitting has some analog with regards to log
Calabi-Yau varieties. Furthermore, I know of no analog of this statement in
the log-Calabi-Yau context.

As promised, we will also attempt to describe F∗OPn .
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Example 8.12. Suppose that X = Pn. We first identify the possibly sum-
mands that can appear (as Christopher Hacon pointed out in class today),
write F∗OPn = OX ⊕ OX(a2) ⊕ · · · ⊕ OX(apn) where the ai < 0 are integers.
Note 0 = Hn(X,OX) = Hn(X,F∗OX) = Hn(X,OX⊕OX(a2)⊕· · ·⊕OX(apn))..
By Serre duality this is the same as the vector space dual of ⊕H0(X,OX(−n−
1)⊗OX(−ai)). Since this is zero, none of the −ai can be larger than n (and
so none of the ai can be smaller than −n). In conclusion, the ai (for i > 1)
must all satisfy 0 > ai ≥ −n.

We begin with X = P2. We know that F∗OP2 = OX ⊕ OX(a2) ⊕ · · · ⊕
OX(ap2) for various ai (the rank can be computed on A2). We recall that

on P2, h0(OX(n)) = dimkH
0(X,OX(n)) =

(
n+2

2

)
. Thus h0((F∗OX)(1)) =

h0(OX(p)) =
(
p+2

2

)
.

On the other hand h0 (OX(1)⊕OX(a2 + 1)⊕ · · · ⊕ OX(ap2 + 1)) =
(

3
2

)
+

the number of ai equal to −1.
So, we consider(

p+ 2

2

)
−
(

3

2

)
= (p+ 2)(p+ 1)/2− 3 =

1

2
p2 +

3

2
p− 2.

In characteristic p = 5, the number of summands total is 25. We know that
a1 = 0, so there is 1 summand of the form OX . We also compute

(
p+2

2

)
−
(

3
2

)
=

18. This leaves us with 25-1-18 = 6 summands left, by our above work, these
must all be equal to −2. We can also show it directly, which is what has to
be done in higher dimensions.

Now we twist by (2). In this case, we have h0((F∗OX)(2)) = h0(OX(2p)) =(
2p+2

2

)
= (2p + 2)(2p + 1)/2. On the other hand OX(2) ⊕ OX(1)⊕18 has a(

2+2
2

)
+((p+2)(p+1)/2−3)

(
3
2

)
dimensional vector space of global sections. In

characteristic p = 5, h0((F∗OX)(2)) = 66 while
(

2+2
2

)
+ ((p+ 2)(p+ 1)/2)

(
3
2

)
=

60. Thus there must be exactly 6 terms of the form OX(−2).
Trying this same computation in characteristic 7 gives us the following.

• 1 copy of OX .
• 33 copies of OX(−1).
• 15 copies of OX(−2).

In general, there is

• 1 copy of OX .
• 1

2
p2 + 3

2
p− 2 copies of OX(−1).

• 1
2
p2 − 3

2
p+ 1 copies of OX(−2).

One can check that these numbers add up to p2.
For X = P3, we know that h0(OX(n)) =

(
n+3

3

)
. Similar computations yield:

• 1 copy of OX
• 1

6
p3 + p2 + 11

6
p− 3 = 1

6
(p+ 3)(p+ 2)(p+ 1)− 4 copies of OX(−1).

• 2
3
p3 − 11

3
p + 3 = 1

6
(2p + 3)(2p + 2)(2p + 1) − (1)(10) − (1

6
(p + 3)(p +

2)(p+ 1)− 4)(4) copies of OX(−2)
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• 1
6
p3−p2+ 11

6
p−1 = 1

6
(3p+3)(3p+2)(3p+1)−(1)(20)−(1

6
(p+3)(p+2)(p+

1)−4)(10)−(1
6
(2p+3)(2p+2)(2p+1)−(1)(10)−(1

6
(p+3)(p+2)(p+1))(4))

copies of OX(−3)

One again checks that the sum of these equals p3.
I do not know of anything more general than this. It could easily be im-

plemented into a computer if one wanted to do the check for any fixed p and
n (possibly even for a generic p and fixed n). There also might be a better
approach to this problem in the literature, but I didn’t find it (except for the
previously mentioned work of Thomsen).

9. Rational singularities

For about 40 years, rational singularities have been the gold standard of nice
singularities. In particular, given any class of singular varieties, the first ques-
tion people tend to ask is, “Does it have rational singularities?” We’ll see today
that rational singularities are certainly not so far from F -pure singularities.

Definition 9.1 (Watanabe). Given a normal graded d-dimensional ring R
with R0 = k and irrelevant ideal m = R, we define the a-invariant of R, as
follows:

a(R) := max{n|(Hd
m(R))n 6= 0} = −min{n|(ωR)n 6= 0}.

Recall the following fact: If S is a standard N-graded ring (again, you don’t
need standard) with irrelevant ideal m = S+, with Y = ProjS, then

(H i
m(S))n = H i−1(Y,OY (n)),

for i > 1. This fact is quite easy to check using Čech cohomology.
If R is an R-pure ring, then Hd

m(R))n = 0 for n > 0. To see this, simply note
that we have injective maps F e : (Hd

m(R))n → (Hd
m(R))pen for all e and the

right side vanishes for e� 0 (this is completely clear by what we wrote above
in a standard graded ring by Serre vanishing). Therefore, if R is F -split, then
a(R) ≤ 0.

Watanabe also proved the following.

Theorem 9.2 (Watanabe). If R is a normal graded ring finitely generated
over k = R0, then R has rational singularities if and only if R satisfies the
following two conditions:

(i) U = Spec(R) \ {m} has rational singularities.
(ii) R is Cohen-Macaulay and a(R) < 0.

Thus, it is obvious that there is a very close relationship between F -purity
and rational singularities. Notice that I haven’t defined Cohen-Macaulay or
rational singularities.
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9.1. Cohen-Macaulay rings. Briefly recall the following definition.

Definition 9.3. A local ring (R,m) of dimension d is called Cohen-Macaulay
if there is a regular sequence of length d on R. In other words, if x1, . . . , xn is
a list of elements of m such that xi+1 is a regular element (non-zero divisor) on
R/(x1, . . . , xi) for all i. A scheme is called Cohen-Macaulay if all of its stalks
are Cohen-Macaulay local rings.

Compare the notion of a regular sequence with the (weaker) notion of a
(full) system of parameters.

Definition 9.4. Elements x1, . . . , xn ∈ R (a local ring of dimension n) form
a full system of parameters if

√
x1, . . . , xn = m.

Remark 9.5. In fact, in a Cohen-Macaulay local ring, any system of parameters
is a regular sequence (so if you find a system of parameters that is not a regular
sequence, the ring is not Cohen-Macaulay). See [BH93].

Example 9.6. The following rings are Cohen-Macaulay.

• Any reduced one dimensional ring (choose any non-zero divisor).
• Any regular ring (any set of minimal generators of the maximal ideal

will work).
• Any hypersurface singularity, or more generally, a complete intersection

(this is a ring cut out by part of a regular sequence in a regular ring,
and so in particular a Cohen-Macaulay ring, choose some additional
parameters completing the sequence).

However, the following ring is not Cohen-Macaulay.

• k[x, y, u, v]/((x, y)∩(u, v)) = k[x, y, u, v]/((xu, xv, yu, yv)). To see this,
first notice that x− u is not a zero divisor (it doesn’t vanish on either
component). Modding out by x − u gives us the following ring T :=
k[x, y, v]/(x2, xv, xy, yv). We simply have to convince ourselves that
every element of the maximal ideal of this ring is a zero divisor but
this is easy since x kills every element of the maximal ideal of T .

9.2. The Homological viewpoint on Cohen-Macaulay, Gorenstein and
Q-Gorenstein conditions. First we remind ourselves what the derived cat-
egory Db

coh(X) is. The objects are complexes of OX-modules with coherent
cohomology and only finitely many places with non-zero cohomology. For ex-
ample, if f : Y → X is proper, then Rf∗OY 2 is an object of Db

coh(X). The
morphisms of Db

coh(X) are more complicated, they are equivalence classes of
morphisms (up to chain homotopy equivalence) where we also invert all the
OX-modules

2Rf∗OY is defined as follows. Take an injective resolution I
q

of OY and set Rf∗OY =
f∗I

q
. A Čech resolution is fine too.
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Definition 9.7. Given a scheme X, an object ω
q
X ∈ Db

coh(X) is called a
dualizing complex if it has finite injective dimension (in other words, it is quasi-
isomorphic to a FINITE complex of injectives) and if RH om

q
OX (ω

q
X , ω

q
X) ∼=

OX .

That fancy RHom
q
OX is some derived functor of Hom (ie, replace the second

term by a complex of injectives, and apply the first operation term by term).
Generally speaking, if you have a short exact sequence, such as 0 → A →

B → C → 0, we do get something like a short exact sequence when applying
a derived functor like Rf∗ (where f : Y → X is a proper map of schemes).
The output is called an exact triangle and is denoted by

Rf∗A // Rf∗B // Rf∗C
+1
// .

Taking cohomology of each complex Rf∗A , Rf∗B and Rf∗C yields the usual
long exact sequence.

Remark 9.8. Dualizing complexes are unique up to shifting (you can shift any
complex) and up to tensoring with invertible sheaves. See [Har66] for details.

Remark 9.9. Any quasi-projective scheme has a dualizing complex. Also, any
F -finite affine scheme has a dualizing complex. If X ⊆ Pnk is a projective vari-
ety, ω

q
X can be defined to be RH omOPn

k
(OX ,∧nΩ1

X/k). For a quasi-projective

variety, simply localize. Such dualizing complexes are nice because they are
“normalized” at each maximal ideal of X (in particular the cohomology of
ω

q
X generically only lives in degree − dimX). In this case h−d(ω

q
X) is called

a canonical module for X and is denoted by ωX . Again, if X is normal, then
any divisor KX such that OX(KX) ∼= ωX is called a canonical divisor.

Definition 9.10. Suppose that R is a local ring with a dualizing complex ω
q
R

and a canonical module ωR (for example, R = Sq is the localization of a ring
S that is normal and of finite type over a field k, the canonical module was
constructed as ωR := (∧dimSΩS/k)

∗∗
q ).

• We say that R is Cohen-Macaulay if ω
q
X is quasi-isomorphic to ωX .

• We say that R is quasi-Gorenstein3 if ωR ∼= R (in a non-local setting,
this means that ωX is locally free or equivalently, that KX is a Cartier
divisor).
• We say that R is Q-Gorenstein if there exists an integer n > 0 such

that nKR is a Cartier divisor4 (it is probably best to assume that R is
normal, unless you are already familiar with the theory of Weil-divisors
on non-normal varieties).
• We say thatR is Gorenstein if it is Cohen-Macaulay and quasi-Gorenstein.

If R is not-necessarily local, we say that R is

3This is also sometimes called begin 1-Gorenstein
4You can have Weil divisors such that a power is a Cartier divisor, consider a ruling on the
quadric cone xy − z2.
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Cohen-Macaulay/quasi-Gorenstein/Q-Gorenstein/Gorenstein

if Rq satisfies the same property for every q ∈ SpecR.

Remark 9.11. Notice that Q-Gorenstein rings are not necessarily Cohen-Macaulay
(although some authors make different definitions).

Proposition 9.12. Every regular ring is Gorenstein, and furthermore, every
complete intersection is also Gorenstein (in particular, a hypersurface singu-
larity is Gorenstein). Most generally, if R is Gorenstein/Cohen-Macaulay,
then so is R/f for any regular element f ∈ R (the converse holds locally on
R).

Proof. See for example [BH93]. �

Example 9.13. The curve singularity R = k[x, y, z]/(xy, xz, yz) is Cohen-
Macaulay but not Gorenstein. To check that it is Cohen-Macaulay, simply
notice that it is reduced and 1-dimensional. To see that it is not Gorenstein,
we take a regular element f = x+y−z and notice that R/f = k[x, y]/(xy, x2+
xy, xy + y2) = k[x, y]/(x2, xy, y2). So we need merely check whether R/f is
Gorenstein. By [BH93, Exercise 3.2.15], it is enough to find non-zero ideals I
and J such that I ∩ J = 0. But that is easy I = (x), J = (y).

Finally, we also state Grothendieck duality.

Theorem 9.14. [Har66] Given a map of schemes f : Y → X of finite type,
there exists a functor f ! : Db

coh(X) → Db
coh(Y ). If furthermore, f is proper

then one has the following:

(i) RH om
q
OX (Rf∗F

q
,G

q
) ∼= Rf∗RH om

q
OY (F

q
, f !G

q
) where F

q
,G

q ∈
Db

coh(X).
(ii) f !ω

q
X is a dualizing complex for Y (denoted now by ω

q
Y ).

(iii) If f : Y → X is a finite map (for example, a closed immersion), f ! is
identified with RH omOX (f∗OY , ) (viewed then as a module on Y ).

We will also use Kodaira vanishing and a relative version, Grauert-Riemenschneider
vanishing.

Theorem 9.15 (Kodaira Vanishing). Suppose that X is a smooth variety of
characteristic zero and L is an ample line bundle on X. Then H i(X,ωX ⊗
L ) = 0 for i > 0 or dually, H i(X,L −1) = 0 for i < dimX.

Theorem 9.16. [GR70] Suppose that π : X̃ → X is a proper map of algebraic

varieties in characteristic zero with X̃ smooth. Then Riπ∗ωX̃ = 0 for i > 0.

Remark 9.17. Both of these theorems FAIL in characteristic p > 0.

9.3. The Cohen-Macaulay and Gorenstein conditions for section rings.
To illustrate these previous notions, let us consider section rings of projective
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varieties with respect to ample divisors. Throughout this section, X will de-
note a smooth5 projective variety over an algebraically closed field of char-
acteristic 0 also with canonical divisor KX . Let A be a (very (very)) ample
divisor on X (ample is actually fine, but it is harmless to make it more ample
for the purposes of the examples in this section).

Let S = ⊕H0(X,OX(nA)) denote the section ring of S with respect to
A and suppose that m = S+ is the irrelevant ideal. If Y = SpecS, then
U = SpecS \ V (m) is a k∗-bundle over q : U → X (far from the trivial bundle
though). If S is generated in degree one, this is an easy exercise, for the more
general case see for example [HS04]. We use i : U → Y to denote the inclusion.

Thus given any divisor D on X, ⊕H0(X,OX(D + nA)) is the sheaf corre-
sponding to a divisor on Y . In fact, it corresponds to the divisor q∗D extended
in the unique way over the irrelevant point of Y (in other words, it corresponds
to i∗q

∗D). We use DY to denote this corresponding divisor on Y and make
the easy observation that n(DY ) = (nD)Y . What’s more important, is that
⊕H0(X,OX(KX+nA)) IS the canonical module ωY of Y (this basically follows
from what we’ve described since q is just a k∗-bundle).

Let us first consider what this means for the quasi-Gorenstein and Q-
Gorenstein conditions. Since ωY = OY (lKY ) is a graded S-module, it will
be free if and only if OY (lKY ) is a locally free graded module (which means if
and only if OY (nKY ) is a line bundle). The graded line bundles on S are just
S with a shift. In summary

Lemma 9.18. S is quasi-Gorenstein if and only if KX ∼ nA for some integer
n (possibly equal to zero). Furthermore, S is Q-Gorenstein if and only if
mKX ∼ nA for some integers n,m not both zero.

Proof. We first prove the second statement which is slightly harder than the
first statement. If S is Q-Gorenstein, then ⊕kH0(X,OX(mKX + kA)) is iso-
morphic to S(n) for some integer n. But OX(mKX) is completely determined
as an OX-module by ⊕kH0(X,OX(mKX + kA)) and if it is isomorphic to
S(n) = ⊕kH0(X,OX(nA + kA)), then nA ∼ mKX as desired. The converse
simply reverses this. �

Corollary 9.19. If X is such that KX ∼ 0, then for any section ring S, S is
quasi-Gorenstein.

Remark 9.20. We also see that it is possible that for some A the section ring is
Q-Gorenstein, while for other A the section ring of the same variety is not Q-
Gorenstein. Furthermore, there are varieties with no section ring (with respect
to an ample divisor) being Q-Gorenstein.

Using something called local duality, the Cohen-Macaulay condition can also
be translated as follows (even for non-graded local rings).

5Large parts of the section also work if X is normal, and all the results of the section hold
if one assumes that X has rational singularities.
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Lemma 9.21. Suppose that (S,m) is a local ring. Then

• S is Cohen-Macaulay if and only if H i
m(S) = 0 for i < dimS.

Remark 9.22. Literally, local duality says that the complex RΓm(S) is dual to
the complex ω

q
S .

If we are working with a normal section ring as before, then H0
m(S) =

H1
m(S) = 0 (the first follows from the fact that S is reduced, the second from

the fact that S is normal, see for example [Har77, Chapter III, Exercise 3.4]).
Therefore, to show the Cohen-Macaulay condition, we only need to show the
vanishing of the higher H i

m(S) for 1 < i ≤ dimS − 1 = dimX. As noted
before, (H i

m(S))n = H i−1(X,OX(n)) and so we have the following:

Lemma 9.23. A section ring S of a projective variety X is Cohen-Macaulay
if and only if Hj(X,OX(n)) = 0 for 0 < j < dimX and all n ≥ 0.

Proof. The Cohen-Macaulay condition certainly implies the vanishing by the
discussion above. Furthermore Hj(X,OX(n)) = 0 for n < 0 by Kodaira-
vanishing (at least if X is smooth although Kodaira vanishing also holds for
rational singularities) which proves the converse. �

One should thus note that it is possible that some section rings of a projec-
tive variety can fail to be Cohen-Macaulay, while others are Cohen-Macaulay
(take a very high Veronese embedding). In particular, X has a section ring
that is Cohen-Macaulay if and only if Hj(X,OX) = 0 for all 0 < j < dimX.

Watanabe’s definition of rational singularities also can be restated as follows.
Recall that he said that S has rational singularities if and only if S is Cohen-
Macaulay and a(S) < 0 where a(S) := max{n|(HdimS

m (S))n 6= 0}.

Lemma 9.24. A section ring S of a projective variety X has rational singu-
larities if and only if Hj(X,OX(n)) = 0 for 0 < j ≤ dimX and all n ≥ 0.

Again, it is possible for some section rings to have rational singularities while
other section rings do not have rational singularities.

We conclude with an example of a ring that is quasi-Gorenstein but not
Cohen-Macaulay.

Example 9.25. Suppose that X is an Abelian surface (for example, the prod-
uct of two elliptic curves). The irregularity ofX is defined to be dimH1(X,OX)
and it an exercise in Hartshorne ([Har77, Chapter II, Section 8, Exercise
8.3(c)]) which shows that the irregularity is 2 (and in particular, non-zero).

9.4. A definition of rational singularities. Now we define rational singu-
larities as well as resolutions of singularities.

Definition 9.26. Let X be a reduced scheme of (essentially) finite type over

a field. We say that a map π : X̃ → X is a resolution of singularities if the
following conditions are satisfied:

• (1) X̃ is [regular / smooth], these notions agree in characteristic zero.
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• (2) π is proper.
• (3) π is birational.

Remark 9.27. Resolutions of singularities exist in characteristic zero, [Hir64],
[BM97], [BEV05], [W lo05], [Kol07]. Furthermore, there always exists a reso-
lution satisfying the following properties.

• (a) π is projective, in other words, it is the blow-up of some (horrible)
ideal.
• (b) π is an isomorphism on the locus where X is regular.
• (c) π is obtained by a sequence of blow-ups at smooth subvarieties (if
X ⊆ Y and Y is smooth, one may instead require that π is obtained
by a sequence of blow-ups at smooth points of Y ).
• (d) The reduced exceptional locus of π is a divisor with simple normal

crossings (it looks analytically like k[x1, . . . , xn]/(some product of the xi)).

Now we define rational singularities.

Definition 9.28. A reduced local ring (R,m) of characteristic zero is said
to have rational singularities if, for a given (equivalently any) resolution of

singularities π : X̃ → X, we have the following two conditions.

(i) π∗OX̃ = OX (in other words, X is normal)
(ii) Riπ∗OX̃ = 0 for i > 0.

Proposition 9.29. If X has rational singularities and π : X̃ → X is a resolu-
tion of singularities, then for any line bundle (or vector bundle) L on X, we

have H i(X,L ) = H i(X̃, π∗L ). In other words, cohomology of line bundles
can be computed on a resolution.

Proof. By the projection formula, Rjπ∗L = 0 for all j > 0. The statement
then follows from the E2 degeneration of the associated spectral sequence. �

10. Other characterizations of rational singularities

Reinterpreting the rational singularities condition in the derived category
gives us the following.

Definition 10.1. IfX is a singular variety and π : X̃ → X is a resolution, then
X has rational singularities if and only if OX → Rπ∗OX̃ is an isomorphism.

We will now apply Grothendieck duality to this definition. Consider the
map OXtoRπ∗OX̃ . Apply the duality functor RH omOX ( , ω

q
X). This gives

us a map

Rπ∗ω
q̃
X
∼= RH omOX (OX̃ , π

!ω
q
X) ∼= RH omOX (Rπ∗OX̃ , ω

q
X)→ RH omOX (OX , ω

q
X) ∼= ω

q
X .

Now, because X̃ is smooth, it is Gorenstein so ω
q̃
X

= ωX̃ [dimX]. Grauert-

Riemenschneider vanishing tells us then that Riπ∗ω
q̃
X

= Ri+dπ∗ωX̃ = 0 for
i + d 6= 0 or equivalently for i 6= −d. If X has rational singularities, we
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immediately see that hiω
q
X = Riπ∗ω

mydot

X̃
= 0 for i 6= −d. Thus X is Cohen-

Macaulay. Conversely, we also obtain the following characterization of rational
singularities due to Kempf.

Lemma 10.2. [KKMSD73] With the notation as above, X has rational sin-
gularities if and only if X is Cohen-Macaulay and π∗ωX ∼= ωX .

Remark 10.3. One always has an inclusion π∗ωX̃ ⊆ ωX so in general, one only
needs to check the surjectivity.

It is a standard exercise to show that π∗ωX = ωX in a regular ring (all
the coefficients in the relative canonical divisor are positive). Once you have
this, you see that the definition of rational singularities is independent of the
resolution.

We’ll do a standard example of rational (and non-rational) singularities in
the graded case, then we’ll explore some consequences of Kempf’s criterion for
rational singularities.

Example 10.4. Consider the (graded) ring R = k[x, y, z]/(xn + yn + zn).
We’ll set Y = Spec k[x, y, z] with closed subscheme X = SpecR. We notice
that the singularities of X can be resolved by blowing-up the cone-point of

X (maximal ideal of R) which is the origin of Y , yielding π : Ỹ → Y (with

exceptional P2 = E) which restricts to π : X̃ → X (with exceptional curve
C). Because X is a hypersurface it is Cohen-Macaulay, and so we need to
show that π∗OX̃(KX̃) ∼= OX(KX). One can always assume that KX and KX̃

agree where π is an isomorphism and furthermore, that OX(KX) ∼= OX and
OY (KY ) = OY since X is a hypersurface in Y = An. Thus, we need to
compute KX̃/X = KX̃ = Kπ|

X̃
the relative canonical divisor of π|X̃ . If this

divisor is effective, then π∗OX̃(KX̃) = OX (what sections of OX have poles
along a divisor at a point). If it’s not effective, then π∗OX̃(KX̃) ( OX since
now we are requiring sections to vanish to some order at the maximal ideal.

We know the relative canonical divisor of π though, it’s simply OỸ (2E) by

[Har77, Chapter II, Exercise 8.5(b)]. By the adjunction formula, (2E+X̃)|X̃ =

(KY +X̃)|X̃ = KX̃ . On the other hand, we know that (nE+X̃)|X̃ = π∗X|X̃ ∼ 0

on X̃. Thus, KX̃ ∼ (2− n)C since E|X̃ = C.
As an easy consequence, we see that X has rational singularities if and only

if n = 1, 2 and otherwise does not have rational singularities. Recall that the
same singularity had F -split singularities if and only if n = 1 mod 3.

Remark 10.5. You might ask where the adjunction formula comes from? If you
have a hypersurface H on a Cohen-Macaulay variety X (if X is normal, the
same statement holds because one can restrict to the Cohen-Macaulay locus
which agrees with X outside a set of codimension 3), then we have a short
exact sequence

0→ OX(−H)→ OX → OH → 0.
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Applying RH omOX ( , ω
q
X) gives us

ω
q
H = RH omOX (OH , ω

q
X)→ ω

q
X → ω

q
X(H)→ ...

If we take cohomology, we get

0→ ωX → ωX(H)→ ωH → h− dimX+1(ω
q
X) = 0

If X is also normal, this is exactly the statement KX |H = KH .

First, we look at Boutot’s theorem (remember, we already showed that a
summand of an F -split ring is always F -split).

Theorem 10.6. [Bou87] If R ⊆ S is an extension of normal domains such
that R is a direct sum of S, then if S has rational singularities, so does R.

Proof. We first claim that there exists resolutions of singularities α : X̃ →
X = SpecX and β : Ỹ → Y = SpecS making a commutative diagram:

X̃

α

��

Ỹ
γ
oo

β
��

X Y
δ
oo

To see this, first resolve the singularities of X by a blow-up of an ideal, and
then blow-up the extension of that ideal on Y (giving Y ′ → Y , that will give
you a diagram) and then further resolve the singularities of Y ′. If we write
down the derived category version of this diagram, we get

Rα∗OX̃ // Rβ∗OỸ

OX

OO

// OY

f

OO

This gives us the following composition:

OX → Rα∗OX̃ → Rβ∗OỸ ∼= OY → OX
which is an isomorphism. Thus OX → Rα∗OX̃ splits (has a left/right inverse)
in the derived category. One should note that Rβ∗OỸ (or even S) is not
necessarily in Db

coh(X), simply because the map R ⊆ S may not be finite /
proper. They do live in Db(X) though. However, Db

coh(X) is a full subcategory
of Db(X) (see [Har66]) so we may still assume our splitting lives in Db

coh(X).
Therefore, our result follows once we prove the following lemma.

Lemma 10.7. [Kov00] With notation as above, if OX → Rα∗OX̃ splits in the
derived category, then X has rational singularities.

Proof. We will use Kempf’s criterion for rational singularities. By assumption,
we have a composition (which is an isomorphism)

OX → Rα∗OX̃ → OX
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Applying RH omOX ( , ω
q
X) we obtain the following composition (which is

also an isomorphism in the derived category)

RH omOX (OX , ω q
X) = ω

q
X RH omOX (Rα∗OX̃ , ω

q
X)oo ω

q
X

oo

Rα∗RH omO
X̃

(Rα∗OX̃ , ω
q̃
X

)

Rα∗ω
q̃
X

α∗ωX̃ [dimX]

Thus h− dimX+iω
q
X = 0 for i 6= 0, which implies that X is Cohen-Macaulay.

On the other hand, taking cohomology at the − dimX place gives us

ωX ← α∗ωX̃ ← ωX

where the left-most arrow is the natural inclusion (which is always injective).
The fact that the composition is an isomorphism implies that the left-most
arrow is also injective, and thus an isomorphism. �

�

11. Deformations of F -split and rational singularities.

One very fundamental property of rational singularities is the fact that they
behave well in families. In fact, one also has the (a-priori) more general state-
ment. We will prove it because eventually we will try to mimic it in charac-
teristic p > 0.

First we need a finer version of resolution of singularities.

Definition 11.1. With X a reduced scheme and Z ⊂ X any scheme (reduced

or not), we say that a resolution of singularities π : X̃ → X is a log resolution
of Z ⊆ X if in addition we assume.

• (i) IZ ·OX̃ is a invertible sheaf. In other words, it is equal to OX̃(−G).
• (ii) exc π ∪ Supp(G) is a divisor with simple normal crossings.

Remark 11.2. Log resolutions also exist in characteristic zero. Again, they
also may be taken to satisfy the following properties.

• (a) π is projective, in other words, it is the blow-up of some (horrible)
ideal.
• (b) π is an isomorphism on X \ (Sing(X) ∪ Z).
• (c) π is obtained by a sequence of blow-ups at smooth subvarieties (if
X ⊆ Y and Y is smooth, one may instead require that π is obtained
by a sequence of blow-ups at smooth points of Y ).
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Theorem 11.3. [Elk78] Suppose that R is a local ring and that f ∈ R is
a regular element such that R/f has rational singularities, then R also has
rational singularities.

Proof. Note that since R/f is rational, R/f and thus R is Cohen-Macaulay.

Let π : X̃ → X = SpecR be a resolution of X that is also simultaneously a
resolution of H = SpecR/f . Let H be the total transform of H (that is, H

is the scheme defined by fOX̃) and let H̃ denote the strict transform of H.

Note, there is a natural inclusion of schemes H̃ → H. Consider the following
diagram.

π∗ωH̃

��
0 // π∗ωX̃

×f
//

� _

ψ

��

π∗ωX̃
//

� _

ψ

��

π∗ωH
//

φ

����

0

0 // ωX
×f

// ωX // ωH // 0

The bottom row is exact because H is Cohen-Macaulay. The top row is exact
by Grauert-Riemenschneider vanishing, [GR70]. The map labeled φ is surjec-
tive since the vertical composition from π∗ωH̃ is an isomorphism. It is then
enough to show that ψ is surjective.

Let C be the cokernel of ψ. The fact that φ is surjective means that

C
×f
// C is surjective by the snake lemma. But this contradicts Nakayama’s

lemma, completing the proof. �

One can ask the slight different (a priori) question of whether rational singu-
larities actually deform in families. In other words, given a flat family X → C
over a smooth curve C, such that one fiber has rational singularities, do the
nearby fibers also have rational singularities? In order to answer this, we will
first need a lemma.

Lemma 11.4. Suppose that X/k = k̄ has rational singularities and H ⊆ X is
a general member of a base-point free linear system (or is simply defined by a
sufficiently general equation) on X. Then H also has rational singularities.

Proof. Let π : X̃ → X be a resolution of singularities. Let H̃ denote the strict

transform of H (because H is general, H̃ = π−1(H)). Since the linear system

on X lifts to a base-point free linear system on X̃, H̃ is a general member of a

base-point-free linear system on X̃ and thus it is smooth. We will show that
Rπ∗OH̃ = OH .

We work locally and assume that H = V (f) for some f ∈ R where X =
SpecR. We first claim that Lπ∗OH ∼= π∗OH = OH̃ , but this is easy since we
have the short exact sequence

0→ OX → OX → OH → 0.
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Since the first two terms have trivial Lif ∗ for i > 0, so does OH = R/f . Thus,

Rπ∗OH̃ ∼= Rπ∗Lπ
∗OH ∼= Rπ∗(OX̃⊗Lπ

∗OH) ∼= (Rπ∗OX̃)⊗OH ∼= OX⊗OH ∼= OH ,

as desired. �

Corollary 11.5. If f : X → C is a proper family over a curve C and a fiber
f−1(c) has rational singularities, then so do the nearby fibers.

Proof. By Elkik’s result, X has rational singularities near f−1(c). Choose an
open set U ⊆ X containing f−1(c) to be such that U has rational singularities.
Let Z = X \ U . Then f(Z) is a set of points of C (it is closed, and doesn’t
contain c ∈ C). A general element of C will give a general fiber of X and
that fiber will be a general element of U . Thus that fiber will have rational
singularities. �

In this section, we’ll point out that F -split singularities need not be normal,
or Cohen-Macaulay (even when they are normal). We’ll also show that they
don’t deform. It is this failure of deformation that will lead us to the right
variant of rational singularities in characteristic p > 0.

We’ve already seen that F -split singularities need not be normal (although
they are pretty close to normal since they are always weakly normal). The
simplest example is k[x, y]/(xy) which is F -split by Fedder’s criterion by not
normal.
F -split singularities need not be Cohen-Macaulay either. For example,

k[x, y, u, v]/((x, y) ∩ (u, v)) is F -split (this can be verified either using Fed-
der’s criterion or the gluing methods we used for 1-dimensional varieties). Of
course, this example is not normal and so one might hope for an example of a
F -split normal singularity that is not Cohen-Macaulay. We provide one here.

We’ll now look at the characteristic p > 0 situation, but first we need to
have a brief discussion about reflexive rank one sheaves.

Suppose that X is normal and integral and that D is an integral Weil divisor
on X. Then OX(D) = {f ∈ K(X)| div(f) + D ≥ 0}. This sheaf is rank
one (clearly) and reflexive. Reflexive in this case means one of the following
equivalent definitions. A sheaf M on X is reflexive if:

• M ∗∗ := H omOX (H omOX (M ,OX),OX) ∼= M via the natural map.
Equivalently...
• M is torsion free and for any open set i : U ⊆ X such that X \ U has

codimension 2 (or more), i∗M |U = M .

Remark 11.6. The second condition allows us to treat Weil divisors like Cartier
divisors by setting U = reg(X). Generally speaking, OX(D) ⊗ OX(F ) 6=
OX(D + F ) but up to double-dual ( ∗∗), it is true. Furthermore, for any
such U , the operation i∗ induces an equivalence of categories between reflexive
sheaves on U and reflexive sheaves on X.

Explicitly, a map of reflexive sheaves is an isomorphism if and only if it is
an isomorphism in codimension 1.
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Lemma 11.7. If X is as above and F -finite, then a torsion-free sheaf M is
reflexive if and only if F e

∗M is OX-reflexive.

Proof. Choose U ⊆ X such that X \U has codimension at least 2, U is regular,
and also such that M |U is locally free (X is normal, so M is already locally
free at every codimension 1 point, whose stalks are PIDs). This also implies
that F e

∗M |U is also locally free as an OU -module since F e
∗OU is a locally free

OU -module. Now, F e
∗M is OX-reflexive if and only if i∗(F

e
∗M |U) ∼= F e

∗M .
But that is clearly equivalent to i∗(M |U) ∼= M which is the same thing as
saying that M is reflexive. �

We now turn to the question of whether F -split singularities deform. We
consider the following situation. Suppose that R is a local ring and f ∈ R is
a regular element. If R/f is F -split, when can we conclude that R is F -split?
The easiest approach would be to show that every map φ : F e

∗ (R/f) → R/f
extends to a map φ̄ : F e

∗R → R. So we have to ask ourselves whether this is
the case. We will show it is the case when R is Gorenstein, and show it is not
the case when R is not Gorenstein (even if R is Cohen-Macaulay and normal).

Lemma 11.8 is also closely related to the fact that the set of Frobenius ac-
tions on Hd

m(R) is generated by the natural Frobenius action F e : HdimR
m (R)→

HdimR
m (R); see [LS01].

Lemma 11.8. Suppose that R is an F -finite Gorenstein local ring. By dual-
izing the natural map G : R → F e

∗R (apply HomR( , ωR)), we construct the
map

Ψ : F e
∗ωR → ωR

By fixing any isomorphism of ωR with R (which we can do since R is Goren-
stein), we obtain a map which we also call Ψ,

Ψ : F e
∗R→ R.

This map Ψ is an F e
∗R-module generator of HomR(F e

∗R,R).

Proof. First note that the choices we made in the setup of the lemma are all
unique up to multiplication by a unit. Therefore, these choices are irrelevant
in terms of proving that Ψ is an F e

∗R-module generator. Suppose that φ is
an arbitrary F e

∗R-module generator of HomR(F e
∗R,R), and so we can write

Ψ( ) = φ(d · ) for some d ∈ F e
∗R. Using the same isomorphisms we selected

before, we can view φ as a map F e
∗ωR → ωR. By duality for a finite morphism,

we obtain φ∨ : R → F e
∗R. Note now that G( ) = d · φ∨( ). But G sends 1

to 1 which implies that d is a unit and completes the proof. �

Before continuing we need the following observation.

Lemma 11.9. Given an effective Weil divisor D in a normal affine scheme
X = SpecR, the maps φ : HomOX (F e

∗OX ,OX) which are compatible with D
exactly coincide with the image of

H omOX (F e
∗OX((pe − 1)D),OX)→H omOX (F e

∗OX ,OX).
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Proof. Suppose we have a φ ∈ HomOX (F e
∗OX ,OX) compatible with D. In

other words, φ(F e
∗OX(−D)) ⊆ OX(−D). Twisting by OX(D). �

We now prove our desired extension result. A similar argument (involving
local duality) was used in the characteristic p > 0 inversion of adjunction
result of [HW02, Theorem 4.9].

Proposition 11.10. Suppose that X is normal and D ⊆ X is an effective Weil
divisor which is also normal. Further suppose that D is Cartier in codimension
2 and that (pe − 1)(KX + D) is Cartier. Then the natural map of F e

∗OX-
modules:

Φ : H omOX (F e
∗OX((pe − 1)D),OX)→H omOD(F e

∗OD,OD).

induced by restriction is surjective.

Proof. The statement is local so we may assume that X = SpecR where R is
the spectrum of a local ring. The module H omOX (F e

∗OX((pe − 1)D),OX) ∼=
F e
∗OX((1 − pe)(KX + D)) which is isomorphic to F e

∗OX = F e
∗R because we

restricted to the local setting.
Thus the image of Φ is cyclic as an F e

∗OD-module which implies that the
image of Φ is a reflexive F e

∗OD-module. Therefore, it is sufficient to prove
that Φ is surjective at the codimension one points of D (which correspond
to codimension two points of X). We now assume that X = SpecR is the
spectrum of a two dimensional normal local ring and that D is a Cartier divisor
defined by a local equation (f = 0). Since D is normal and one dimensional,
D is Gorenstein, and so X is also Gorenstein.

Consider the following diagram of short exact sequences:

0 // R

1 7→fpe−1

��

×f
// R

17→1

��

// R/f //

17→1
��

0

0 // F e
∗R

F e∗×f
// F e
∗R // F e

∗ (R/f) // 0.

Apply the functor HomR( , ωR) and note that we obtain the following diagram
of short exact sequences.

0 // ωR
×f

// ωR // ωR/f ∼= Ext1
R(R/f, ωR) // 0

0 // F e
∗ωR

α

OO

F e∗×f
// F e
∗ωR

β

OO

// F e
∗ωR/f

∼= Ext1
R(F e

∗ (R/f), ωR)

δ

OO

// 0

The sequences are exact on the right because R is Gorenstein and hence
Cohen-Macaulay. Note that by Lemma 11.8, we see that δ and α can be
viewed as F e

∗R-module generators of the modules HomR/f (F
e
∗ (R/f), R/f) ∼=

HomR/f (F
e
∗ωR/f , ωR/f ) and HomR(F e

∗R,R) ∼= HomR(F e
∗ωR, ωR) respectively.

Furthermore, the map labeled β can be identified with α ◦
(
F e
∗ (×fp

e−1)
)
.
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But the diagram proves exactly that the map β ∈ HomR(F e
∗R,R) restricts

to a generator of HomR/f (F
e
∗ωR/f , ωR/f ) which is exactly what we wanted to

prove. �

Remark 11.11. If D is not assumed to be normal but instead assumed to be
S2 and Gorenstein in codimension 1, the proof goes through without change.

Corollary 11.12. If R is normal and Q-Gorenstein with index not divisible
by p > 0 and R/f is normal and F -split, then R is also F -split.

What happens if we relax these normal and Q-Gorenstein conditions?

Example 11.13. [Fed83] [Sin99b] Consider R = k[u, v, y, z]/(uv, uz, z(v −
y2)). Note that (uv, uz, z(v − y2)) = ((u, z) ∩ (v, z)) ∩ (u, v − y2) and so R is
not normal. We will show it is not F -pure but that there is a hypersurface
through the origin that is F -pure.

First, if it was F -pure, then there would be a splitting φ : F e
∗R → R

which would induce a splitting of k[u, v, y, z] (by Fedder’s Lemma) and also
be compatible with the minimal primes of R, (u, z), (v, z) and also (u, v− y2).
All of those rings are F -split, and so that isn’t a problem. However, (v, z) +
(u, v − y2) = (u, v, y2, z) isn’t reduced so this is impossible.

Now, consider R/y = k[u, v, z]/(uv, uz, zv) which is F -pure.

Of course, you may view this as cheating since R is not normal (although
it is still Cohen-Macaulay). One can construct normal examples as well, see
[Sin99b, Theorem 1.1]. We’re going to abandon F -splitting for a little while
now, and we’ll consider the following condition.

Lemma 11.14. If R is an F -split local ring, then the natural map Ψ : F∗ωR →
ωR of Lemma 11.8 is surjective. Furthermore, if R is quasi-Gorenstein, then
the converse also holds.

Proof. If R is F -split, we have a composition which is an isomorphism R →
F∗R→ R. Dualizing this gives us

ωR F∗ωR
Ψ

oo ωRoo

which is also an isomorphism. Thus Ψ is surjective.
Conversely, if Ψ is surjective and R is quasi-Gorenstein, then ωR ∼= R and

we have a surjective map Ψ : F∗R→ R. �

Definition 11.15. [Fed83] A Cohen-Macaulay ring R is called F -injective if
the natural map Ψ : ωR → ωR is surjective.

Remark 11.16. You might ask why he called this condition F -injective and
not F -surjective? It is because Ψ is the local dual of the Frobenius map
F : Hd

m(R) → Hd
m(R) on local cohomology and Ψ is surjective if and only if

that map is injective. More generally, in the non-Cohen-Macaulay case, he
said that R was F -injective if hi(F∗ω

q
R)→ hi(ω

q
R) is surjective for every i.
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Furthermore, we have the following.

Proposition 11.17. [Fed83] Suppose that R is Cohen-Macaulay and R/f is
F -injective. Then R is F -injective.

Proof. Consider the following diagram of short exact sequences:

0 // R

1 7→fpe−1

��

×f
// R

17→1

��

// R/f //

17→1
��

0

0 // F e
∗R

F e∗×f
// F e
∗R // F e

∗ (R/f) // 0.

Apply the functor HomR( , ωR) and note that we obtain the following diagram
of short exact sequences.

C
η

// D // 0

0 // ωR

OO

×f
// ωR

OO

// ωR/f ∼= Ext1
R(R/f, ωR)

OO

// 0

0 // F e
∗ωR

α

OO

F e∗×f
// F e
∗ωR

β

OO

// F e
∗ωR/f

∼= Ext1
R(F e

∗ (R/f), ωR)

δ

OO

// 0

where C andD are the cokernels of α and β respectively. Thus, C = ωR/ΨR(F e
∗ωR)

and D = ωR/ΨR(F e
∗ f

pe−1ωR)). We have a natural surjective map

µ : D = ωR/Ψ(F e
∗ f

pe−1ωR))→ ωR/Ψ(F e
∗ωR)) = C

and we see that µ ◦ η : C → C is simply multiplication by f . But η surjects
and thus so does µ ◦ η. But this contradicts Nakayama’s lemma. �

12. F -rationality

First we do an example we didn’t finish last time.

Example 12.1. Let E be an ordinary elliptic curve (we know this it is F -
split) and suppose that X = E ×k P1 is the trivial ruled surface over E. Let
S be a section ring of X with respect to a (very) very ample divisor. We
will show that S is F -split (equivalently, that X is F -split) but that S is not
Cohen-Macaulay. First we show that S is not Cohen-Macaulay. It is enough
to show that H2

S+
(S) 6= 0. But, (H2

S+
(S))0 = H1(X,OX). By [Har77, Chapter

V, Lemma 2.4] (basic facts about the Cohomology of ruled surfaces) imply
that this is H1(E,OE) 6= 0 because E is an elliptic curve. Now we need to
show that X is F -split. This follows from the following easy lemma:

Lemma 12.2. Suppose that X and Y are Frobenius split schemes of finite
type over k. Then X ×k Y is also Frobenius split.
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Proof. Choose φ : F∗OX → OX and ψ : F∗OY → OY both splittings (in other
words, sends 1 to 1). We will construct a splitting on X ×k Y . We will do
it locally (but canonically) so that the splitting clearly glues. Thus assume
that X = SpecR and Y = SpecS. We need to construct a splitting of the
Frobenius map FR⊗kS : R⊗k S → F∗R⊗k S. Given r⊗ s ∈ R⊗k S, we define
α(r⊗ s) = φ(r)⊗ ψ(s). This map is obviously R⊗ S-linear, and it sends 1 to
1, it also clearly glues. �

Because of this, Fedder suggested that normal, Cohen-Macaulay and F -
injective might be a closer match to rational singularities than F -purity. There
was some evidence for this. In particular, Fedder showed that certain classes
of hypersurfaces (defined over Z) had rational singularities over C if and only
if for all sufficiently large p > 0, the singularity viewed modulo p had F -pure
(equivalently, F -injective) singularities. Notice that this doesn’t allow x3+y3+
z3 because that does not have F -pure singularities for p = 2 mod 3. Elkies
has since shown that for cones over planar elliptic curves (none of which have
rational singularities), they are supersingular (and thus ordinary) for infinitely
many p. If you are considering cones over Calabi-Yau varieties (for simplicity,
we also assume that these cones are also Cohen-Macaulay, for example a K3-
surface), then the condition that φ : F e

∗ωS → ωS is known for surfaces and
open for higher dimensional varieties.
F -injective singularities still aren’t quite good enough. Consider the follow-

ing attempted proof at showing the Cohen-Macaulay F -injective singularities
are rational (ignoring the issue of characteristic p > 0 reduction for now).

Not a proof. Given a resolution of singularities π : X̃ → X = SpecR, we want
to show that π∗ωX̃ = ωX . Consider the diagram:

π∗F∗ωX̃ = F∗π∗ωX̃� _

F∗α
��

π∗ΨX̃
// π∗ωX̃� _

α

��

F∗ωX
ΨX

// ωX

where the horizontal maps are the natural maps dual to Frobenius. If one
can show that π∗ΨX̃ and α are surjective, then that would imply that ΨX is
surjective. Going the other way seems hard though. The following definition
was thus given which easily implies that α is surjective. �

Definition 12.3. An F -finite reduced ring R is called F -rational if it is Cohen-
Macaulay and there are no proper / non-zero submodules of ωX stable under
ΨX (ie, M ⊆ ωX such that ΨX(M) ⊆M).

Why is this definition motivated? Well, in a polynomial ring with X =
Spec k[x1, . . . , xn], Φe

X can be identified with the map F e
∗k[x1, . . . , xn]→ k[x1, . . . , xn]

that sends xp
e−1

1 . . . xp
e−1
n to 1 and all the other monomials to zero. Given any

polynomial f ∈ k[x1, . . . , xn], we can always find a monomials m and an e� 0
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such that Φe
X(mf) = 1. Thus, there are no ΦX-stable proper ideals in a poly-

nomial ring.

Definition 12.4. [LT81] X = SpecR is said to have pseudo-rational sin-
gularities if it is Cohen-Macaulay and also for every proper birational map

π : X̃ → X with X̃ normal, π∗ωX̃ = ωX .

Remark 12.5. If R does not necessarily have a dualizing complex, then another
definition is used (using local cohomology modules instead of ωX , this is tanta-
mount with replacing R by its completion). Lipman proved that regular rings
have rational singularities (and that this holds under extreme generality).

Theorem 12.6 (Smith). If R is F -rational, then R is pseudo-rational.

Proof. This should be immediate from the diagram above. �

We will show that F -rational singularities satisfy many nice properties. In
particular, we will study their deformations, how they behave under sum-
mands, etc. We will also show that F -rational singularities really do coincide
with rational singularities by reduction mod p > 0.

We have defined 3 different classes of singularities now. F -rational, F -
split, and F -injective (the last one has both Cohen-Macaulay and non-Cohen-
Macaulay variants). We also know that F -rational singularities are F -injective
(and Cohen-Macaulay) and that F -pure singularities are F -injective (meaning
hi(F∗ω

q
R) → hi(ω

q
R) surjects for all i > 0, or dually H i

m(OX) → H i
m(F∗OX)

injects for all i > 0). We will now investigate the normality properties of
F -injective and F -rational singularities.

Lemma 12.7. Suppose that R is F -finite and F -rational, then R is normal.

Proof. Without loss of generality, we may assume that R is local. Let RN be
the normalization of R. We have the following inclusion map i : R → RN .
We will prove that the map is an isomorphism. R is already Cohen-Macaulay,
and so it is S2, and so it by Serre’s criterion for normality, we simply need to
check that R is regular in codimension 1. Thus by localizing we can assume
that R is a 1-dimensional ring (and thus so is RN , which is now regular). We
have the following diagram of rings.

RN
F
RN
// F∗R

N

R

i

OO

FR

// F∗R

F∗i

OO
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Apply RHomR( , ω
q
R), and then Grothendieck duality for a finite map i gives

us the following dual diagram.

ω
q
RN

i∨

��

F∗ω
q
RN

oo

F∗i∨

��

ω
q
R F∗ω

q
R

oo

All the rings in question are Cohen-Macaulay, so we can remove all the dots
and merely work with sheaves. We simply need to show that i∨ is injective
because an isomorphism of the induced map of dualizing complexes, will imply
that the original map was an isomorphism. Now, if W is a the multiplicative
system of elements not contained in any minimal prime of R, we also have the
diagram

ωRN

i∨

��

γ
// W−1(ωRN ) ∼= K(R)

ωR // W−1(ωR) ∼= K(R)

where K(R) is the total field of fractions of R. We notice that ωRN is torsion-
free on each irreducible component thus the map γ is injective which implies
that i∨ is also injective. �

Now we turn to F -injectivity, we do not assume that R is Cohen-Macaulay
but rather that H i

m(OX)→ H i
m(F∗OX) injects for every maximal ideal m ∈ R.

Note that this condition localizes, in particular hi(F∗ω
q
Rq

)→ hi(ω
q
Rq

) surjecting
localizes.

Lemma 12.8. Suppose that (R,m) is a reduced local ring of characteristic p,
X = SpecR and that X \ m is weakly normal. Then X is weakly normal if
and only if the action of Frobenius is injective on H1

m(R).

Proof. We assume that the dimension of R is greater than 0 since the zero-
dimensional case is trivial. Embed R in its weak normalization R ⊂ RWN

(which is of course an isomorphism outside of m). We have the following
diagram of R-modules.

0 // R �
�

//
� _

��

Γ(X \m,OX−m)

∼=
��

// // H1
m(R) //

��

0

0 // RWN � � // Γ(Xwn \m,OXwn−m) // // H1
m(RWN) // 0

The left horizontal maps are injective because R and RWN are reduced. One
can check that Frobenius is compatible with all of these maps. Now, R is
weakly normal if and only if R is weakly normal in RWN if and only if every
r ∈ RWN with rp ∈ R also satisfies r ∈ R by Proposition 7.9.
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First assume that the action of Frobenius is injective on H1
m(R). So suppose

that there is such an r ∈ RWN with rp ∈ R. Then r has an image in Γ(X \
m,OX−m) and therefore an image in H1

m(R). But rp has a zero image in
H1
m(R), which means r has zero image in H1

m(R), which guarantees that r ∈ R
as desired.

Conversely, suppose that R is weakly normal. Let r ∈ Γ(X \m,OX−m) be
an element such that the action of Frobenius annihilates its image r in H1

m(R).
Since r ∈ Γ(X \ m,OX−m) we identify r with a unique element of the total
field of fractions of R. On the other hand, rp ∈ R so r ∈ RWN = R. Thus we
obtain that r ∈ R and so r is zero as desired. �

Theorem 12.9. Let R be a reduced F -finite ring with a dualizing complex. If
R is F -injective then R is weakly normal (and thus in particular seminormal).
Furthermore, R is weakly normal if and only if H1

q (Rq) → H1
q (F∗Rq) injects

for all q ∈ SpecR.

Proof. A ring is weakly normal if and only if all its localizations at prime ideals
are weakly normal [RRS96, 6.8]. If R is not weakly normal, choose a prime
P ∈ SpecR of minimal height with respect to the condition that RP is not
weakly normal. Apply Lemma 12.8 to get a contradiction. �

Corollary 12.10. If R is a one dimensional F -finite reduced ring, then R is
weakly normal if and only if it is F -injective. In particular, if R is local and
has perfect residue field, then R is weakly normal if and only if R is F -split.

This also gives us another example of an F -injective singularity that is not
weakly normal.

Example 12.11. The curve singularity corresponding to the pushout {Fp(t)[x]→
Fp(t)[x]/(x) = Fp(t)← Fp(tp)[s]} is weakly normal, but not F -split, since the
residue field extension over the singular point (when mapping to the normal-
ization) is not separable.

We now return to our study of F -rationality. In the case that R is a domain,
we will also show that ωR has a unique smallest submodule stable under ΦX .

First we need a lemma.

Lemma 12.12. Suppose that R → S is a finite map of rings such that
HomR(S,R) is isomorphic to S as an S-module. Further suppose that M
is a finite S-module.

Then the natural map

(1) HomS(M,S)× HomR(S,R)→ HomR(M,R)

induced by composition is surjective.

Proof. First, set α to be a generator (as an S-module) of HomR(S,R). Suppose
we are given f ∈ HomR(M,R) ∼= HomR(M ⊗S S,R). We wish to write it as a
composition.
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Using adjointness, this f induces an element Φ(f) ∈ HomS(M,HomR(S,R)).
Just as with the usual Hom-Tensor adjointness, we define Φ(f) by the following
rule:

(Φ(f)(t))(s) = f(t⊗ s) = f(st) for t ∈M , s ∈ S.
Therefore, since HomR(S,R) is generated by α, for each f and t ∈M as above,
we associate a unique element af,t ∈ S with the property that (Φ(f)(t))( ) =
α(af,t ).

Thus using the isomorphism HomR(S,R) ∼= S, induced by sending α to 1,
we obtain a map Ψ : HomR(M,R)→ HomS(M,S) given by Ψ(f)(t) = af,t.

We now consider α ◦ (Ψ(f)). However,

α(Ψ(f)(t)) = α(af,t) = (Φ(f)(t))(1) = f(t).

Therefore f = α ◦ (Φ(f)) and we see that the map (1) is surjective as desired.
�

In particular, this yields the following corollary.

Corollary 12.13. If φ ∈ HomR(F e
∗R,R) generates HomR(F e

∗R,R) as an R-
module, then φl generates HomR(F le

∗ R,R) as an F el
∗ R-module for all l > 0.

Theorem 12.14. [HH94a], [BB09] Suppose that R is an F -finite domain and
that M is a torsion-free rank one R-module with a non-zero map φ : F e

∗M →
M . Then there exists a unique smallest non-zero submodule τ(M,φ) ⊆ M
which is stable under φ (in other words, which satisfies φ(F e

∗N) ⊆ N).

Proof. Since φ is non-zero and M is rank-1, φ is generically surjective. Choose
c ∈ R such that

(i) φc : F e
∗Mc →Mc generates (HomR(F e

∗M,M))c as an F e
∗R-module.

(ii) cM ⊆ φ(F e
∗M)

(iii) Mc
∼= Rc and F e

∗Rc
∼= F e

∗Mc is a free Rc-module.

Condition (i) is possible because the map of F e
∗R-modules

〈φ〉F e∗R → HomR(F e
∗M,M)

is generically surjective (since φ is non-zero) because HomR(F e
∗M,M) is a rank

one F e
∗R-module. Condition (ii) and (iii) are possible since M is rank-one.

Suppose now that N ⊆ M is a φ-stable submodule. Our immediate goal is
to show that Nc = Mc

∼= Rc. Choose a prime q ∈ SpecRc, it is enough to
show that Nq = Mq

∼= Rq. Choose 0 6= n ∈ Nq and choose l � 0 such that
F le
∗ n /∈ q · F le

∗ Mq = F l
∗(q

[pe]Rq). By hypothesis, F le
∗ Mq is a free Rq-module,

so that F l
∗(Mq/q

[pe]) is also free as an R/q-module of the same rank. Choose
elements a2, . . . ak ∈Mq such that the images of a1 = n, a2, . . . , ak form a basis
for F le

∗ Mq/q
[pe] as an Rq/q-module. We have a map γ : ⊕iaiR→ F≤∗ Mq.

By Nakayama’s lemma, γ is surjective. But it is a surjective map between
free modules of the same rank, so it is also injective. Therefore, a1, a2, . . . , ak
form a basis for F le

∗ Mq/q
[pe] over Mq. In particular, by projecting onto the first
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coordinate, there exists a map ψ : F le
∗ Mq → Mq such that ψ(F le

∗ nRq) = Mq

(notice that F le
∗ nRq is not the summand generated by n, but it contains it).

Thus ψ(F le
∗ Nq) = Mq. However, ψ( ) = φl(d · ) by (i) which implies that

Mq ⊇ Nq ⊇ φl(F le
∗ Nq) = Mq also.

Because Nc = Mc, we know that cnM ⊆ N for some n > 0. We will show
that n = 2 works. Choose l� 0 such that ple ≥ n+ 1. Then

c2M ⊆ cφl(F le
∗ M) = φl(F le

∗ c
pleM) ⊆ φl(F le

∗ c
nM) ⊆ φl(F le

∗ N) ⊆ N

as desired. We call the element c2 a test element for (M,φ).
Finally, we construct τ(M,φ).

τ(M,φ) :=
∑
l≥0

φl(F le
∗ c

2M)

It is certainly non-zero, and it is contained in any φ-stable N by construction.
This completes the proof. �

Definition 12.15. Given (M,φ) as above, the module τ(M,φ) is called the
test submodule of (M,φ). With ΨR : F∗ωR → ωR, the module τ(ωR,ΨR) =
τ(ωR) is called the simply the test submodule. An element 0 6= d ∈ R is called
a test element for (M,φ) if dM ⊆ N for every nonzero submodule N of M
satisfying φ(N) * N . It follows from the above proof that c ∈ R is such that
Rc is regular and Mc

∼= Rc, then c has some power which is a test element.

If R is a ring of characteristic p > 0 and π : X̃ → X = SpecR is a res-
olution of singularities, then philosophically, τ(ωR) should be the submodule
corresponding to π∗ωX̃ (this submodule is independent of the choice of reso-
lution as pointed out in [GR70]). In particular, the same argument we use
to prove that F -rational singularities were pseudo-rational, can be used to
show that there is always a containment τ(ωR) ⊆ π∗ωX̃ , simply consider the
diagram:

π∗F∗ωX̃ = F∗π∗ωX̃� _

F∗α
��

π∗ΨX̃
// π∗ωX̃� _

α

��

F∗ωX
ΨX

// ωX

We also have the following useful fact about τ(M,φ).

Lemma 12.16. With τ(M,φ) as above, φ(F e
∗ τ(M,φ)) = τ(M,φ).

Proof. Because φ is not zero, φ(F e
∗ τ(M,φ)) is non-zero. On the other hand, it

is clearly φ-stable thus φ(F e
∗ τ(M,φ)) ⊇ τ(M,φ) by the universal property of

τ(M,φ). However, φ(F e
∗ τ(M,φ)) ⊆ τ(M,φ) by definition. �

Corollary 12.17. [Vél95] Suppose that M is a generically rank-1 module,
φ : F e

∗M → M is R-linear and that τ(M,φ) = M . Then for any non-zero
submodule N ⊆M , there exists an n > 0 such that

φn(F ne
∗ N) = M.
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In particular, for every non-zero c ∈ R, there exists an n > 0 such that
φn(F ne

∗ cN) = M .

Proof. Choose c ∈ R such that cM ⊆ N . We may thus assume that N = cM .
We will show that φn(F ne

∗ cM) ⊆ φn(F ne
∗ cM) which will complete the proof

since we already know that
∑

n>0 φ
n(F ne

∗ cM) = M . Now,

φn(F ne
∗ cM)

= φn(F ne
∗ cφ(F e

∗M))
= φn(F ne

∗ F
e
∗ (c

peM))

= φn+1(F
(n+1)e
∗ cp

e
M)

⊆ φn+1(F
(n+1)e
∗ cM)

as desired. �

Corollary 12.18. In an F -finite ring, the F -rational locus is open.

Remark 12.19. I only point this out because using the historically standard
definitions, this is much less obvious.

Remark 12.20. The condition of the corollary is sometimes called strong F -
rationality.

We now try to show that F -rational singularities deform (even though we
don’t expect pseudo-rational singularities to deform, a problem which I believe
is open in general).

Theorem 12.21. Suppose that R is a reduced local ring and f ∈ R is a reg-
ular element. If R/f has F -rational singularities, then R also has F -rational
singularities.

Proof. The fact that R/f is normal and Cohen-Macaulay immediately imply
that R is normal and Cohen-Macaulay. Therefore, we simply have to show
that τ(ωR) = ωR. Choose c ∈ R such that c is a test element for (ωR,ΨR),
and also for (ωR/f ,ΨR/f ).

Consider the following diagram of short exact sequences (for every e > 0):

0 // R

17→cfpe−1

��

×f
// R

17→c
��

// R/f //

17→c̄
��

0

0 // F e
∗R

F e∗×f
// F e
∗R // F e

∗ (R/f) // 0.
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Apply the functor HomR( , ωR) and note that we obtain the following diagram
of short exact sequences.

C
η

// D // 0

0 // ωR

OO

×f
// ωR

OO

// ωR/f ∼= Ext1
R(R/f, ωR)

OO

// 0

0 // ⊕eF e
∗ωR

α

OO

F e∗×f
// ⊕eF e

∗ωR

β

OO

// ⊕eF e
∗ωR/f

∼= ⊕e Ext1
R(F e

∗ (R/f), ωR)

δ

OO

// 0

where α is the dual map to the map R→ F e
∗R that sends 1 to c, and β is the

dual map to the map which sends 1 to cfp
e−1. Sticking direct sums in from of

the terms in the bottom row guarantees that the image of α is τ(ωR) and that
the image of δ is τR(ωR/f ) = ωR/f by hypothesis. Of course, the image of β
is contained in τR(ωR). Thus D has a natural surjection onto C = ωR/τ(ωR).
Furthermore, the composition C → D → C is as before, multiplication by f
and Nakayama’s lemma implies that C is zero again. �

Finally, let’s also compare some of the other basic properties of F -rational
singularities with those of rational singularities. In particular, we might ask if
Boutot’s theorem still holds?

Theorem 12.22. Suppose that i : R→ S is a finite inclusion of normal local
domains that splits. Then if S is F -rational (respectively F -injective) then R
is F -rational (respectively F -injective).

Proof. We first show that R is Cohen-Macaulay (note that in either case, S is
Cohen-Macaulay by hypothesis). Set κ : S → R to be the splitting of i. By
dualizing the composition κ ◦ i : R→ S → R, we obtain

RHomR(R,ω
q
R) oo RHomR(S, ω

q
R) oo RHomR(R,ω

q
R)

ω
q
R
oo ω

q
S
oo ω

q
R

Just as in the original Boutot’s theorem, we immediately obtain that R is
Cohen-Macaulay since the identity h− dimR+iω

q
R → h− dimR+iω

q
R factors through

zero for i > 0.
For the F -injectivity, we have things pretty easy. We know that the natural

map ωS → ωR is surjective. But we also have the diagram:

ωR oooo ωS

F e
∗ωR

ΨR

OO

oooo F e
∗ωS

ΨS

OOOO

Since ΨS is surjective, ΨR is also surjective which implies that R is F -injective.
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For F -rationality, the argument is very very similar. We write down essen-
tially the same diagram.

ωR oo ωS

⊕eF e
∗ωR

α

OO

oo ⊕eF e
∗ωS

β

OO

Now however, the maps α and β are ΨR and ΨS (respectively) pre-multiplied
by some element c ∈ R that is a test element for both ωR and ωS. As before,
β is surjective which implies that α is surjective. �

Remark 12.23. Without the condition that S is a finite extension of R, these
results are false. See [Wat97].

13. Reduction to Characteristic p

Our goal over the next couple weeks is to give a proof that F -rational singu-
larities correspond to rational singularities via reduction mod p. This is hard.
We will break this up into several steps.

• Introduce reduction to characteristic p� 0.
• Modulo a really hard technical lemma, prove the theorem.
• Prove the really hard technical lemma (we might put this off a little

bit).

In this section we go over the necessary prerequisites to reduce a variety to
characteristic p. A good introductory reference to this theory is [HH06, 2.1].
Our primary goal is the statements needed to work with rational singularities.

Let R be a finitely generated C algebra. We can write R = C[x1, . . . , xn]/I
for some ideal I and let S denote C[x1, . . . , xn]. Let X = SpecR and Y =

SpecS. Let π : BlJ(Y ) = Ỹ → Y be a strong (projective) log resolution of X
in Y with reduced exceptional divisor E mapping to X (induced by blowing
up an ideal J). Note that we may also assume our schemes are projective; that
is, we can embed Y as an open set in some Pn, and thus take the projective
closure X of X in Pn. We may even extend π (our embedded resolution) to

π : P̃n → Pn, a strong (projective) log resolution of X with reduced exceptional
set E.

There exists a finitely generated Z algebra A ⊂ C (including all the coeffi-
cients of a set of generators of I and those required by the blow-up of J), a

finitely generated A algebra RA, an ideal JA ⊂ RA, and schemes ỸA, XA and
EA of finite type over A such that RA⊗AC = R, JAR = J , XA×SpecAC = X,
YA ×SpecA SpecC = Y , EA ×SpecA SpecC = E and EA ×SpecA SpecC = E
with EA effective and supported on the blow-up of JA. We may localize A at a
single element so that YA is smooth over A and EA is a simple normal crossing
divisor over A if desired. By further localizing A (at a single element), we
may assume any finite set of finitely generated RA modules is A-free, see for
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example [Hun96, 3.4] and [HR74] and we may assume that A itself is regular.
We can also take any finite collection of modules, for example Rif∗OX to this
mixed characteristic setting, as well as maps between these modules.

Theorem 13.1 (Generic Freeness). [HR74] Let A be a Noetherian domain and
let R be a finitely generated A-algebra. Let S be a finitely generated R-algebra
and let E be a finitely generated S-module. Let M be a finitely generated R-
submodule E and let N be a be a finitely generated A-submodule. Let D =
E/(M + N). Then there is a nonzero element a ∈ A such that Da is a free
Aa-module.

In our particular case, we may localize so that SA, RA, IA, JA, etc. are
all locally free over A, as well as the various cokernels of maps between these
modules.

We will now form a family of positive characteristic models of X by looking
at all the rings Rt = RA ⊗A k(t) where k(t) is the residue field of a maximal
ideal t ∈ T = SpecA. Note that k(t) is a finite, and thus perfect, field
of characteristic p. In the case where we are reducing a particular maximal
(closed) point, tensoring with k(t) will either give us a unique closed point in
our characteristic p model (if we started over C as we assumed), or a possibly
finite set of closed points if we began by working over some other field of
characteristic zero. If we are working with a non-closed point, we will have
a finite set of points of SpecRt pulling back to xA. We may also tensor the
various schemes YA, EA, etc. with k(t) to produce a characteristic p model of
an entire situation.

Example 13.2. If we let R = C[x, y, z]/(x2 + y2 + z2), then we would let
A = Z, so that SA = A[x, y, z], RA = SA/(x

2 + y2 + z2), XA = SpecRA, and
YA = SpecSA. An obvious resolution is just blowing up the point (x, y, z)

so that is what we do in SA as well to get πA : (ỸA = Proj(SA ⊕ (x, y, z)t ⊕
(x, y, z)2t2⊕. . .))→ YA. In characteristic 2, this resolution is not a resolution of
singularities since XZ/2 isn’t even reduced! However, in all other characteristics
it is.

Various properties of rings that we are interested in descend well from char-
acteristic zero. For example, smoothness, normality, being reduced, and being
Cohen-Macaulay all descend well [Hun96, Appendix 1]. Specifically, Rt has
one of the above properties above for an open set of maximal ideals of A if
and only if R(FracA) has the same property (in which case so does R). Further-
more, a ring R of finite type over a field k is Cohen-Macaulay if and only if for
every field extension k ⊂ K, R⊗kK is Cohen-Macaulay [BH93, 2.1.10]. Thus
Rt is Cohen-Macaulay for an infinite set of primes if and only if R is Cohen-
Macaulay. Likewise, it has already been shown that if Rt is seminormal for a
Zariski dense set of primes, then R is seminormal [HR76, 5.31].

Let us show that the Cohen-Macaulay condition descends to characteristic
p > 0.
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Example 13.3. Suppose that R = S/I where S = C[x1, . . . , xn]. We know
that RHomS(R/I, S) ∼= ω

q
R[− dimS]. We consider hi(RHomS(R, S)) for some

i. We will show that this vanishes in characteristic zero if and only if it
vanishes in characteristic p � 0. Choose A to be a finitely generated Z-
algebra containing all the coefficients of a set of generators {fi}of I. Let
SA = A[x1, . . . , xn] and set IA to be the ideal in SA generated by those same
{fi}. Set RA = SA/IA. If necessary, we replace A by a localization such that
all modules in sight are A-free.

We claim first that hi(RHomS(R, S)) ∼= hi(RHomSA(RA, SA)) ⊗A C. But
this is easy, since it is the same thing as hi(RHomSA(RA, SA)) ⊗SA S notic-
ing that S is a flat SA-algebra (see for example, [Mat89, Theorem 7.11, Ex-
ercise 7.7]). Therefore, we have that hi(RHomS(R, S)) 6= 0 if and only if
hi(RHomSA(RA, SA)) 6= 0 because the latter term is A-free.

We choose p to be a maximal ideal of A and we want to do the same thing
base-changing with k = A/p. In particular, we need to show that

hi(RHomSA(RA, SA))⊗A k ∼= hi(RHomSk(Rk, Sk)).

This is more complicated because k is not A-flat. Choose a free Sk-resolution
P q of RA, tensoring with Sk over SA turns it into a complex mapping to
Rk. Alternately, tensoring with k over A keeps it acyclic (since it would then
correspond to Tor of the A-free module RA). Thus, it is still a free-resolution of
Rk. The statement then reduces to the question of whether HomSA( , SA)⊗k
is the same as HomSA( ⊗A k, Sk) for A-free modules in the blank. Choose M
to fill in the blank, an A-free SA-module. Choose F → G→M → 0 to be an
exact sequence with F and G chosen as SA-free modules, by localizing further,
we may assume that H = Image(F ) ⊆ G is A-free. We have a natural map

γ(F ) : HomSA(F, SA)⊗ k → HomSA(F ⊗A k, Sk)
This can also be described as

HomSA(F, SA)⊗SA Sk → HomSA(F ⊗SA Sk, Sk)
But since = SnA, this is just Snk → Snk in an obvious isomorphism. Thus γ(F )
and γ(G) are isomorphisms. Now, consider the following diagram (where all
tensor products are over A)

Tor1A(HomSA(H,SA), k) = 0 // HomSA(M,SA)⊗ k // HomSA(G,SA)⊗ k // HomSA(F, SA)⊗ k

HomSA(Tor
1
A(H, k), Sk) = 0
��

// HomSA(M ⊗ k, Sk)
��

// HomSA(G⊗ k, Sk)
��

∼

// HomSA(F ⊗ k, Sk)
��

∼

Therefore, if you want to determine if a ring is Cohen-Macaulay, in some sense
it is sufficient to check it in characteristic p� 0.

Note that if one also has the coordinates of a point x ∈ X (closed or not),
one can reduce that closed point to characteristic p as well. Let x ⊂ R be a
prime ideal of R and simply include coefficients for a set of generators of x into
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A. This gives us an ideal xA ∈ RA. Note without loss of generality we may
assume that xA = x ∩ RA so that xA is prime. Furthermore, we may assume
that if we tensor the short exact sequence

0→ xA → RA → RA/xA → 0

by ⊗AC we simply re-obtain

0→ x→ R→ R/x→ 0,

the original exact sequence. Note that we may certainly also assume that
RA/xA is A-free as well. In particular, if x is maximal (closed) and if we are
working over C or any other algebraically closed field of characteristic zero,
we may assume that RA/xA = A since R/x ∼= C. Otherwise (still in the case
where x is maximal) we see that RA/xA is a module-finite extension of A.

The following lemma is very useful for reducing cohomology to prime char-
acteristic, the method of proof is essentially the same as [Har77, Chapter III,
Section 12] (just different modules are flat).

Lemma 13.4. [Har98, 4.1] Let X be a noetherian separated scheme of finite
type over a noetherian ring A, and let F be a quasi-coherent sheaf on X, flat
over A. Suppose that H i(X,F ) is a flat A-module for each i > 0. Then one
has an isomorphism

H i(X,F )⊗A k(t) ∼= H i(Xk(t),Fk(t))

for every point t ∈ T = SpecA and i ≥ 0, where k(t) is the residue field of
t ∈ T , Xk(t) = X ×T Spec(k(t)), and Fk(t) is the induced sheaf on Xk(t).

Remark 13.5. In particular, by the previous lemma and flat base change, we
see that H i(XC,FC) = 0 if and only if H i(Xk(t),Fk(t)) = 0 for an open set of
t ∈ SpecA.

By making various cokernels of maps free A-modules, we may also assume
that maps that are surjective over C are still surjective over A, and thus sur-
jective in our characteristic p model as well. The following example illustrates
this.

Example 13.6. Suppose we are given a scheme X with a divisor E ⊆ X all
over C. Suppose that some map

H i(X,OX)→ H i(E,OE)

surjects for some i. Then we consider the corresponding map

H i(XA,OXA)→ H i(EA,OEA)→ C → 0

with cokernel C. We may of course localize so that C is locally free over A, in
which case, since tensoring with C over A cannot annihilate a non-zero element,
we obtain that C = 0. Therefore the corresponding map was surjective in the
first place. Then, since tensor is right exact, we apply 13.4 and obtain that
the map

H i(Xt,OXt)→ H i(Et,OEt)
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surjects as well.

Definition 13.7. Given a class of singularities P defined in characteristic
p > 0, we say that a variety X in characteristic 0 has singularities of open P -
type if for all sufficiently large choices of A as above, and all but finitely many
maximal ideal p ∈ A, Xp has P -singularities. We say that X in characteristic
zero has singularities of dense P -type if for all sufficiently large choices of A as
above, there exists a Zariski-dense set of maximal ideals p ∈ SpecA such that
Xp has P -singularities. In this way we can define singularities of (open/dense)
F -rational, F -injective and F -split/pure type.

Remark 13.8. In general, the singularities we consider are stable under base
change by finite field extensions, so one only needs to check a single finitely
generated Z-algebra A.

Theorem 13.9. Suppose that X is a variety of characteristic zero. Then if
X has dense F -rational type, X has rational singularities.

Proof. Take a resolution π : X̃tøX. The map ωX̃ → ωX surjects if and only
if it’s reduction to characteristic p� 0 does (and we’ve already shown that).
The Cohen-Macaulay condition was done in the example above. �

Let’s do another example of this sort of proof. We give another definition.

Definition 13.10. Suppose that X is a normal Cohen-Macaulay variety of

characteristic zero and suppose that π : X̃ → X is a log resolution, fix E
to be the exceptional divisor. We say that X has Du Bois singularities if
π∗ωX̃(E) = ωX .

Remark 13.11. Du Bois singularities can be defined for even reduced varieties,
but the definition (and proofs) are much harder.

Theorem 13.12. Suppose that X is normal, Cohen-Macaulay and has dense
F -injective type, then X has Du Bois singularities.

Proof. Let π : X̃ → X be a log resolution of X with exceptional divisor E. We
reduce this entire setup to characteristic p � 0 such that the corresponding
X is F -injective. Let F e : X → X be the e-iterated Frobenius map.

We have the following commutative diagram,

F e
∗π∗ωX̃(peE)

ρ

��

// π∗ωX̃(E)

β

��

F e
∗ωX

φ
// ωX

where the horizontal rows are induced by the dual of Frobenius, OX → F e
∗OX

and the vertical arrows are the canonical maps. By hypothesis, φ is surjective.
On the other hand, for e > 0 sufficiently large, the map labeled ρ is an iso-
morphism. Therefore the map φ◦ρ is surjective which implies that the map β
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is also surjective. But then it must have been surjective in characteristic zero
as well, and in particular, X has Du Bois singularities. �

Remark 13.13. The above theorem also holds without the Cohen-Macaulay
and normal hypotheses, but the proof is much more difficult.

14. Rational singularities are open F -rational type

Our main goal will to be to give a proof (modulo a hard theorem) of the
following.

Theorem 14.1. [Har98], [MS97] If X is in characteristic zero has rational
singularities, then it has open F -rational type.

To prove this, we will use the following lemma which we will black-box for
today. First recall that on a normal variety X, a Q-divisor is just an element
of div(X)⊗Q, a formal sum of prime divisors.

Lemma 14.2. [Har98] Suppose that R0 is a ring of characteristic zero, π :
X0 → SpecR0 is a log resolution of singularities, D0 is a π-ample Q-divisor
with simple normal crossings support. We reduce this setup to characteristic
p� 0. Then the natural map

(F e)∨ = ΦXp : F e
∗ωXp(dpeDpe)→ ωXp(dDpe)

surjects.

Before we use this, let us explain some points. We will assume that π :
X0 → SpecR0 is projective, and thus the blow-up of some ideal sheaf J ⊆ R.
It follows then that J · OX0 = OX0(−F ) is relatively ample (here, F is an
effective divisor), in particular, the relatively effective divisors are not effective.
Our divisor D0 will in practice to be something close to the form −εF where ε
is a small negative number (actually, we may twist by a Cartier divisor, really
a test element, from SpecR0 as well)

Thus, in our situation dDpe
Here is the proof idea. Choose dn ∈ R to be a test element for ωRp (we can

essentially find one of these in characteristic zero if we are clever).
For an appropriate D = ε(−F −div(dn)) as above, we construct a diagram:

π∗F
e
∗ωXp(dpeDpe) //

��

π∗ωXp(dDpe) ∼= π∗ωXp

��

F e
∗d

nωRp
ΦRp

// ωRp

We know that ΦRp(F
e
∗dωRp) is contained in τ(ωRp ,ΦRP ). Thus we have

ωR = π∗ωXp = π∗ΦX(F e
∗ωXp(dpeDpe)) ⊆ ΦR(F e

∗dωRp) ⊆ ωRp

which completes the proof.
Let us explain how we find our d ∈ R0 in characteristic zero. We fix d

such that (R0)d is regular. It follows that some power of d is a test element
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for (ωRp ,ΦRp) in any characteristic. In particular, we may then choose our
resolution of singularities π : X0 → SpecR0 such that X0 is a log resolution
of (X, (d)n) for any integer n > 0. We choose −F as above and set D =
ε(−F − div(d)) where dDe = 0. After reducing to characteristic p � 0,
find n > 0 such that dn is a test element. Fix pe such that εpe ≥ n. We
then claim that we have a map π∗ωXp(dpeDpe) ⊆ dωR. It is sufficient to
check this in codimension 1, and so we are simply reduced to verifying that
d−εpe ÷R (d)d≤ −n ÷R (d) which is obvious. The proof of the theorem then
follows from the result above.

In fact, the same proof gives us the more general result.

Theorem 14.3. [Har05], [Smi00b] With the notation as above (π∗ωX)p =
τ(ωRp ,ΦRp).

Remark 14.4. This was not obvious when it was first proved. While the proof I
gave is philosophically the same, it is substantially streamlined in comparison
to Hara’s original proof. In particular, we avoid several applications of local
duality.

Remark 14.5. For a (quasi-)Gorenstein ring R with R ∼= ωR and π : X →
SpecR as above, π∗ωX is an example of a multiplier ideal (it is independent of
the resolution by [GR70]). Thus the previous result says that the multiplier
ideal coincides with the test ideal τ(R,ΦR) for quasi-Gorenstein rings.

Question 14.6. Is it true that if X has Du Bois singularities, then X has dense
F -injective type?

Note thatX cannot have open F -injective type by the example k[x, y, z]/(x3+
y3 + z3) which is F -injective if and only if p = 1 mod 3.

15. Multiplier ideals, log terminal and log canonical
singularities

In the past section, we found analogs of F -injective and F -rational singu-
larities. We want to do the same for F -split singularities.

Definition 15.1. A pair (X,∆) is the combined information of a normal
variety X and a (usually effective) Q-divisor ∆. We also typically assume
that (X,∆) is log Q-Gorenstein which means that KX + ∆ ∼q mD where
m ∈ Q and D is a Cartier divisor (in other words, this means that KX + ∆
is Q-Cartier). Occasionally we will also consider triples (X,∆, at) where a is
an ideal sheaf on X and t ≥ 0 is a real number (additional generalizations
are also possible where at is replaced by a graded system of ideals, or even a
formal product of such ideals). For the moment, we will assume that a is a

Definition 15.2. A log resolution π : X̃ → X of a pair or triple (X,∆, at) is a
resolution of singularities such that a ·OX̃ = OX̃(−G) and also with divisorial
exceptional set E such that E, G and the strict transform π−1

∗ ∆ of ∆ are all
in simple normal crossings.
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In this setting, we can choose divisors KX̃ and KX that agree wherever π is
an isomorphism. Then we can consider:

KX̃ − π
∗(KX + ∆)− tG =

∑
aiEi

or equivalently

KX̃ + (−
∑

aiEi) = π∗(KX + ∆)− tG

where the Ei are prime divisors. Here most of the Ei are effective except
for those that agree with components of ∆ or divisorial components of V (a).
We should explain the term π∗(KX + ∆) and note that for the purposes of
this course, we will only define this when KX + ∆ is Q-Cartier. Set choose
0 6= n ∈ Z such that n(KX + ∆) is Cartier. Then

π∗(KX + ∆) :=
1

n
π∗ (n(KX + ∆))

The ai that appear in the above formula are called discrepancies. Numbers ai
associated to an exceptional divisor Ei are called exceptional discrepancies.

Why might one want to do this (work with these ∆ at all)?

(a) If KX is Cartier (or Q-Cartier, then you can pull back KX as described
above). But if not, it’s much less clear how to pull back KX , see [DH09].

(b) As one changes from one variety to another (via restriction, finite or
birational maps) one can pick up a ∆ even if you didn’t already start
with one. For example, if π∗ : Y → X = Spec k[x, y, z]/(x4 + y4 + z4)
is the obvious resolution of singularities, then π∗KX = KY + 2E where
E is the copy of the exceptional divisor. For some purposes, it is useful
to keep this information around. In particular, the data of the pair
(Y, 2E) may be as good as the data of X.

(c) (This is another variant of (b)) If one is compactifying a variety X,
one often compactifies with a nice divisor D such that X \ D = X.
Keeping track of this D is also useful.

One can actually define some additional classes of singularities in this set-
ting.

Definition 15.3. • We say a triple (X,∆, at) is log canonical (or lc) if
all the discrepancies ai satisfy ai ≥ −1. One can check this on a single
log resolution.
• We say a triple (X,∆, at) is Kawamata log terminal (or klt) if all the

discrepancies ai satisfy ai ≥ −1. One can check this on a single log
resolution.
• We say that a triple (X,∆, at) is purely log terminal (or plt) if all the

exceptional discrepancies ai satisfy ai ≥ −1 for all log resolutions. One
needs a sufficiently big log resolution in order to check this.
• One can also define canonical and terminal singularities by requiring

that all exceptional discrepancies satisfy ai ≥ 0 and ai > 0 respectively.
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Remark 15.4. If X is smooth, ∆ = 0 and a = OX , then all exceptional
discrepancies are positive (on all log resolutions). Thus smooth varieties have
terminal singularities.

Remark 15.5. Suppose that (X,∆, at) is klt / lc and ∆′ ≤ ∆ is such that
KX + ∆′ is Q-Cartier. Then (X,∆′) is also klt/lc.

Example 15.6. If X is smooth and ∆ is a Q-divisor with simple normal
crossings support, then if all the coefficients of components of ∆ are less than
1, (X,∆) is klt. If all the coefficients are less than or equal to 1, then (X,∆) is
lc. If all the coefficients are less than or equal to 1, and none of the components
with coefficient 1 intersect, then (X,∆) is plt.

Definition 15.7. Given a Q-divisor D =
∑
biDi where the Di are prime

divisors, we define

dDe :=
∑
dbieDi and dDe :=

∑
dbieDi

Definition 15.8. With notation as above, the multiplier ideal J (X,∆, at) is
defined to be

π∗OX̃(dKX̃ − π
∗(KX + ∆)− tGe) = π∗OX̃(dOX̃(

∑
aiEi)e)

This always is a subsheaf of OX as long as ∆ ≥ 0 (the point is that effective
exceptional divisors can be ignored when pushing down).

Much of the multiplier ideals usefulness ties in with a relative version of
Kawamata-Viehweg vanishing (a generalization of Grauert-Riemenschneider
vanishing, which was a relative version of Kodaira vanishing).

Theorem 15.9. [Kaw82][Vie82] Riπ∗OX̃(dKX̃ − π∗(KX + ∆)− tGe) = 0 for
i > 0.

Remark 15.10. If ∆ is effective, we see that (X,∆, at) is klt if and only if
J (X,∆, at) = OX . Furthermore, if (X,∆, at) is log canonical, then J (X,∆, at)
is a radical ideal. Furthermore, if (X,∆, at) is klt and ∆ ≥ 0, then b∆c = 0.

Example 15.11. Consider X = A2 and ∆ = 2
3

divX(xy(x − y)). A log reso-

lution π : X̃ → X can be obtained by doing one blow-up at the origin, use E
to denote the exceptional divisor. We set KX = 0, then

KX̃−π
∗(KX+∆) = KX̃−

2

3
divX̃(xy(x−y)) = E−2

3
(3E+C1+C2+C3) = −E−2

3
(C1+C2+C3)

where the Ci are the strict transforms of the three curves in the support of
∆. Thus (X,∆) is log canonical, but not Kawamata/purely log terminal.
Furthermore, J (X,∆) = (x, y) = m.

An example of a plt pair that is not klt is (A2, div(x)). Generally speaking
the pair made up of a smooth variety and a smooth divisor is always purely
log terminal, but a pair made up of a smooth variety and a simple normal
crossings divisor is not plt – (A2, div(xy)) is not purely log terminal (even
though it is its own log resolution).
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In general, klt singularities are rational, klt singularities are log canonical,
Gorenstein rational singularities are klt. Log canonical singularities are Du
Bois and Gorenstein Du Bois singularities are log canonical.

Proposition 15.12. [Elk81] If (X,∆) is klt and ∆ ≥ 0, then X has rational
singularities. If X is Gorenstein, then if X has rational singularities, X has
canonical (and thus klt) singularities.

Proof. Let π : X̃ → X be a log resolution. We have a natural inclusion
OX̃ ⊆ OX̃(dKX̃ − π∗(KX + ∆)e). Applying Rπ∗ gives us the composition

OX → Rπ∗OX̃ → Rπ∗OX̃(dKX̃ − π
∗(KX + ∆)− tGe) ∼= J (X,∆) = OX

This map is clearly an isomorphism in codimension 1, and so it is an isomor-
phism. Thus OX → Rπ∗OX̃ splits, and so X has rational singularities.

In the Gorenstein case, for the converse direction, if ωX ∼= Rπ∗ωX̃ , then
OX ∼= Rπ∗OX̃(KX̃ − π∗KX). �

Proposition 15.13. [KK09] If (X,∆) is log canonical, then X has Du Bois
singularities.

Proof. We only provide a proof in the Cohen-Macaulay case (which is the

only case where we defined Du Bois singularities). Set π : X̃ → X to be a log
resolution with reduced exceptional divisor E. There exists a natural inclusion
ι : %∗ωX′(G) ⊆ ωX , so the question is local. We may assume that X is affine
and need only prove that every section of ωX is already contained in %∗ωX′(G).

Next, choose a canonical divisor KX′ and let KX = %∗KX′ . As ∆′ = %−1
∗ ∆,

it follows that the divisors KX′ + ∆′ and %−1
∗ (KX + ∆) = ∆′ may only differ

in exceptional components. We emphasize that these are actual divisors, not
just equivalence classes (and so are B and B′).

Since X and X ′ are birationally equivalent, their function fields are isomor-
phic. Let us identify K(X) and K(X ′) via ρ∗ and denote them by K. Further
let K and K ′ denote the K-constant sheaves on X and X ′ respectively.

Now we have the following inclusions:

Γ(X, %∗ωX′(E)) ⊆ Γ(X,ωX) ⊆ Γ(X,K ) = K,

and we need to prove that the first inclusion is actually an equality. Let
g ∈ Γ(X,ωX). So

(2) 0 ≤ divX(g) +KX ≤ divX(g) +KX + ∆

As (X,∆) is log canonical, there exists an m ∈ N such that mKX + m∆ is a
Cartier divisor and hence can be pulled back to a Cartier divisor on X ′. By
the choices we made earlier, we have that %∗(mKX +m∆) = mKX′+m∆′+Θ
where Θ is an exceptional divisor.

However, using the fact that (X,∆) is log canonical, one obtains that Θ ≤
mG. Combining this with (2) gives that

0 ≤ divX′(g
m) + %∗(mKX +m∆) ≤ m

(
divX′(g) +KX′ + ∆′ +G

)
,
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and in particular we obtain that

divX′(g) +KX′ + ∆′ +G ≥ 0.

We claim that:
divX′(g) +KX′ +G ≥ 0.

Proof. By construction

(3) divX′(g) +KX′ +G = %−1
∗ (divX(g) +KX︸ ︷︷ ︸

≥0

) + F +G︸ ︷︷ ︸
exceptional

.

Where F is an appropriate exceptional divisor, though it is not necessarily
effective. We also have that

(4) divX′(g) +KX′ +G = divX′(g) +KX′ + ∆′ +G︸ ︷︷ ︸
≥0

− D′︸︷︷︸
non-exceptional

.

Now let A be an arbitrary irreducible component of divX′(g) +KX′ +G. If A
were not effective, it would have to be exceptional by (3) and non-exceptional
by (4). Hence A must be effective and the claim is proven. �

It follows that g ∈ Γ(X ′, ωX′(G)) = Γ(X, %∗ωX′(G)), completing the proof. �

15.1. The log terminal and log canonical conditions for cones. We
study the condition that (Y,∆Y ) has log canonical/terminal singularities when
Y = SpecS is the affine cone over a projective variety X and ∆Y corresponds
to the pull-back of some Q-divisor ∆X on X via the k∗-bundle Y \V (S+)→ X
(or rather the closure of the pullback).

Suppose that (X,∆X) is a log Q-Gorenstein pair and that A is an ample
divisor. Set S = ⊕H0(X,OX(nA)) to be the section ring and Y = SpecS and
∆Y as above.

Proposition 15.14. The pair (Y,∆Y ) is klt (respectively lc) if and only if
(X,∆X) is klt (respectively lc) and −(KX + ∆X) = rA for some r ∈ Q>0

(respectively r ∈ Q≥0).

Remark 15.15. This proposition says that (X,∆X) is log Fano if and only if
(Y,∆Y ) is klt for some section ring. Likewise, (X,∆) is log Calabi-Yau is
equivalent to the condition that (Y,∆Y ) is lc with lc-center at the origin.

Proof. Certainly the fact that (X,∆X) is klt/lc is necessary because of the
k∗-bundle description of Y \ V (S+) → X described above. For simplicity we
assume now that A is (very (very)) ample. We can reduce to this case using
Veronese cover tricks which I won’t describe here.

First we ask ourselves what it means that (KY + ∆Y ) is Q-Cartier (recall,
that KY is just the sheaf associated to KX via pull-back). This means that
n(KY + ∆Y ) is locally free, and because we are working in the graded setting,
this just means that OY (n(KY + ∆Y )) = OY (m). But this is equivalent to the
requirement that n(KX + ∆X) ∼ mA.
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We now blow-up to origin of Y giving us a map π : Ỹ → Y . There is one
exceptional divisor E of this map and E is isomorphic to X. Furthermore,
restricting OỸ (−E) to E yields OX(A).

Write KỸ − π∗(KY + ∆Y ) = aE − π−1
∗ ∆Y . It is clear that π−1

∗ ∆Y |E = ∆X .
However, we also know that (KỸ + E)|E = KX . Rewriting our first equation
gives us π∗(KY + ∆Y ) = KỸ − aE + π−1

∗ ∆Y . Therefore

0 ∼ (KỸ + E − (a+ 1)E + π−1
∗ ∆Y )|E = KX + (a+ 1)A+ ∆Y

or in other words, −(KX + ∆Y ) ∼ (a + 1)A. In particular, if (Y,∆) klt
(respectively lc) then a > 0 (respectively a ≥ 0). Thus −(KX + ∆Y ) is some
positive rational multiple of A (respectively, −(KX+∆Y ) is some non-negative
multiple of A).

Conversely, if −(KX + ∆Y ) is some positive rational multiple of A and
(X,∆X) is klt, it can be shown that (Y,∆Y ) is klt. We will not do this
now though. There are two approaches, the most direct is to do a complete
resolution of singularities followed by some analysis. The second is to use
inversion of adjunction which allows one to relate the singularities of a divisor
with the singularities of a pair. We’ll cover more on this second topic later. �

16. Pairs in positive characteristic

We’ve already studied pairs in a certain context. Consider pairs of the form
(R, φ) where φ : F e

∗R → R is an R-linear map. Our first goal will be to see
that (R, φ) is very like a pair (X,∆) where KX + ∆ is Q-Cartier.

Proposition 16.1. Suppose that X is a normal F -finite algebraic variety.
Then there is a surjective map from non-zero elements φ ∈ HomOX (F e

∗OX ,OX)
to Q-divisors ∆ such that (pe − 1)(KX + ∆) ∼ 0. Furthermore, two elements
φ1, φ2 induce the same divisor if and only if there is a unit u ∈ H0(X,F e

∗OX)
such that φ1(u · ) = φ2( ).

More generally, there is a bijection of sets between effective Q-divisors ∆
such that KX + ∆ is Q-Cartier with index6 not divisible by p > 0 and certain
equivalence relations on pairs (L , φ : F e

∗L → OX) where L is a line bundle.
The equivalence relation described above is generated by equivalences of the

following two forms.

• Consider two pairs (L1, φ1 : F e1L1 → OX) and (L2, φ2 : F e2L2 →
OX) where e1 = e2 = e. Then we declare these pairs equivalent if there
is an isomorphism of line bundles ψ : L1 → L2 and a commutative

6The index of a Q-Cartier divisor D is the smallest positive integer n such that n(KX + ∆)
is Cartier.
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diagram:

F e
∗L1

F e∗ψ
//

φ1 ##

Fe∗L2

φ2{{

OX
• Given a pair (L , φ : F e

∗L → OX), we also declare it to be equivalent

to the pair (L p(n−1)e+···+1, φn : F ne : L p(n−1)e+···+1 → · · · → L → OX).

First we do an example.

Example 16.2. Suppose R is a local ring and X = SpecR. Further sup-
pose that R is Gorenstein (or even such that (pe − 1)KX is Cartier), then
HomR(F e

∗R,R) ∼= F e
∗R as we’ve seen. The generating map ΦR ∈ HomR(F e

∗R,R)
corresponds to the zero divisor by the description above. Generally speak-
ing, if ψ( ) = ΦR(x · )for x ∈ F e

∗R, then ∆ψ = 1
pe−1

divX(x). Even

without the Gorenstein hypothesis, viewing HomR(F e
∗R(d(pe − 1)∆φe), R) ⊆

HomR(F e
∗R,R), we have that φ generates HomR(F e

∗R(d(pe− 1)∆φe), R) as an
F e
∗R-module.
Explicitly, consider R = k[x]. We know ΦR : F e

∗R → R is the map that
sends xp

e−1 to 1 and the other relevant monomials to zero. Given a general
element ψ : F e

∗R→ R defined by the rule

xp
e−1 � // a0

xp
e−2 � // a1

. . . � // . . .

x1 � // ape−2

1 � // ape−1

Then ψ( ) = ΦR

(
(ap

e

0 + ap
e

1 x+ · · ·+ ape−2x
pe−2 + ape−1x

pe−1) ·
)

and so

divψ = 1
pe−1

div(ap
e

0 +ap
e

1 x+· · ·+ape−2x
pe−2+ape−1x

pe−1). One can do similarly

easy computations for polynomial rings in general.

Now we give a proof of the proposition.

Proof. For the first equivalence, given φ ∈ HomOX (F e
∗OX ,OX) ∼= H0(X,F e

∗OX((1−
pe)KX)) define a divisor Dφ to be the effective divisor determined by φ lin-
early equivalent to (1 − pe)KX . Set ∆φ = 1

pe−1
Dφ. It is easy to see that

(pe − 1)(KX + ∆φ) ∼ 0.
Now, if φ1 and φ2 induce the same divisor, then Dφ1 = Dφ2 which means that

φ1 and φ2 are unit multiples of each other (as sections of H0(X,F e
∗OX((1 −

pe)KX))) and the result follows.
For the more general statement, given φ : HomOX (F e

∗L ,OX) ∼= H0(X,F e
∗L

−1((1−
pe)KX)), we can associate a divisor Dφ such that OX(Dφ) ∼= L −1((1−pe)KX)
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and define ∆φ = 1
pe−1

Dφ. That the first equivalence relation holds is the same

as in the case that L = OX above. The fact that the second equivalence rela-
tion holds, is an easy consequence of the following lemma. After the proof of
this lemma, it is an easy exercise to verify that these two equivalence relations
are all that is needed. �

Before doing this lemma, let us do an example.

Lemma 16.3. Suppose that L1 and L2 are line bundles and φ1 : F e1L1 → OX
and φ2 : F e2L2 → OX are OX-linear maps. We can then define a composition
of these maps as follows: Consider ψ := φ2 ◦ (F e2

∗ (L2 ⊗ φ1)) : F e1+e2L1 ⊗
L pe1

2 → L2. Then

∆ψ =
pe1 − 1

pe1+e2 − 1
∆φ1 +

pe1(pe2 − 1)

pe1+e2 − 1
∆φ2

Notice that pe1−1
pe1+e2−1

+ pe1 (pe2−1)
pe1+e2−1

= 1.

Proof. The statement is local, so we may assume that L1
∼= L2

∼= OX . In fact,
we may assume that X is the prime spectrum of a DVR R with parameter
r. Fix ΨR : F∗R → R to be the generating map of HomR(F∗R,R) as an
F∗R-module.

In this case, φ1( ) = Ψe1
R (x1 · ) and φ2( ) = Ψe2

R (x2 · ) where xi ∈ F ei
∗ R

and so ∆φi = 1
pei−1

divX(xi). Then

φ2(F e2
∗ φ1( )) = Ψe2

R (F e2
∗ x2Ψe1

R (F e1
∗ x1 )) = Ψe1+e2

(
F e1+e2
∗ x1x

pe1
2

)
The divisor of this composition is evidently

1
pe1+e2−1

(div(x1) + pe1 div(x2))

= 1
pe1+e2−1

(div(x1) + pe1 div(x2))

= pe1−1
pe1+e2−1

∆φ1 + pe1 (pe2−1)
pe1+e2−1

∆φ2

�

Lemma 16.4. An element φ ∈ HomR(F e
∗R,R) is contained inside the sub-

module

(5) HomR(F e
∗R(d(pe − 1)∆e), R) ⊆ HomR(F e

∗R,R)

if and only if Dφ ≥ (pe − 1)∆.

Proof. Because all the module are reflexive the statement can be reduced to
the case when R is a discrete valuation ring and ∆ = s div(x) where x is
the parameter for the DVR R and s ≥ 0 is a real number. In this case,
the inclusion from equation 5 can be identified with the multiplication map
R→ R which sends 1 to xds(p

e−1)e. Thus, φ ∈ HomR(F e
∗R,R) ∼= R is contained

inside HomR(F e
∗R(d(pe − 1)∆e), R) ∼= xds(p

e−1)eR if and only if Dφ ≥ ds(pe −
1)e div(x) = d(pe − 1)∆e. However, since Dφ is integral, it is harmless to
remove the round-up d·e. �
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Remark 16.5. One can work with non-effective divisors similarly. One then
can consider maps φ : F e

∗L → K(X) where K(X) is the fraction field of X.

Definition 16.6. [HH89], [HW02], [Tak04a], [Sch08b] Suppose that (X,∆, at)
is a triple where X is an F -finite normal scheme, ∆ is an effective Q-divisor,
a is an ideal sheaf and t ≥ 0 is a real number. Further suppose that X is the
spectrum of a local ring R. We say that (X,∆, at) is:

(a) sharply F -pure if there exists some e > 0 and some φ ∈ HomR(F e
∗R(d(pe−

1)∆e), R) such that 1 ∈ φ(F e
∗ a
dt(pe−1)e).

(b) strongly F -regular if for every c ∈ R \ 0, there exists a e > 0 and some
φ ∈ HomR(F e

∗R(d(pe − 1)∆e), R) such that 1 ∈ φ(F e
∗ ca

dt(pe−1)e).

If X is not the spectrum of a local ring, then we generalize these definitions
by requiring them at every point. They are open conditions.

Suppose that X is quasi-projective. The (big) test ideal of (X,∆, at), de-
noted τb(X,∆, a

t) is defined to be the unique smallest non-zero ideal of J ⊆ R
such that φ(F e

∗ a
dt(pe−1)eJL ) ⊆ J for every φ : F e

∗L → OX such that ∆φ ≥ ∆.
This always exists and its formation commutes with localization.

Definition 16.7. We say that R is strongly F -regular / F -pure if the same
statement holds for ∆ = 0 and a = R.

Remark 16.8. If ∆ = ∆ψ for some ψ : F e
∗L → OX , then in the definition of

the big test ideal / sharp F -purity / strong F -regularity, one only needs to
check the condition for φ = ψn.

Proposition 16.9. A ring is strongly F -regular if and only if τb(R) = R.
Furthermore a strongly F -regular ring is always F -rational (in particular, it
is Cohen-Macaulay) and a Gorenstein F -rational ring is strongly F -regular.

Proof. Suppose R is strongly F -regular and local and suppose that J satisfies
φ(F e

∗J) ⊆ J for every φ : F e
∗R → R. The strong F -regularity hypothesis

implies immediately that J contains R and is thus equal to 1. Conversely,
suppose that τb(R) 6= R, then choose any element 0 6= c ∈ τb(R). It follows
that for every φ ∈ HomR(F e

∗R,R), φ(F e
∗ cR) ⊆ τb(R) which does not contain

1.
We’ve already seen that F -rational Gorenstein rings are strongly F -regular.

This is simply because R = ωR and in this case we have a map ΨR : F e
∗ (ωR =

R) → (ωR = R) such that τ(R,ΨR) = R (interestingly, we don’t need the
Cohen-Macaulay condition here, it is implied for free by what follows).

Now assume that R is strongly F -regular, we will show it is F -rational and
in particular Cohen-Macaulay (this is one proof where I think it is easier to use
the tight closure definitions). First note that R is necessarily normal since we
know the conductor is φ-compatible for all φ ∈ HomR(F e

∗R,R), so in particular
τb(R) is always contained in the conductor. We now show that R is Cohen-
Macaulay by showing that hi(ω

q
R) = 0 for all i > − dimR. Suppose not, so

choose 0 6= c ∈ R such that chi(ω
q
R) = 0 but hi(ω

q
R) 6= 0 (such modules always
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have support strictly smaller in dimension than the ring so this is possible).
Dual to the map R→ F e

∗R which sends 1 7→ c, we have the map

hi(F e
∗ω

q
R)

F e∗×c
// hi(F e

∗ω
q
R) // hi(ω

q
R)

For e large enough, this map is necessarily surjective (since our map R→ F e
∗R

splits), but this is ridiculous since it is also zero.
Using the same argument, we also have that the composition F e

∗ cωR ⊆
F e
∗ωR → ωR surjects for all e � 0. But this clearly implies that τ(ωR) = ωR

which completes the proof. �

Remark 16.10. We have the following implications:

strongly F -regular

��

+3 F -rational

��
F -pure +3 F -injective

Furthermore, under the (quasi)-Gorenstein hypothesis the horizontal arrows
can be reversed.

Proposition 16.11. The ideal τb(X,∆, a
t) exists.

Proof. I’ll only prove this for X = SpecR. Choose a non-zero ψ ∈ M e
∆,at =

(F e
∗ a
dt(pe−1)e) · HomR(F e

∗R(d(pe − 1)∆e), R). We view ψ as a map from F e
∗R

to R. Choose c a test element for the pair (R,ψ). Then we claim that

τb(R,∆, a
t) =

∑
e≥0

∑
φ∈Me

∆,at

φ(F e
∗ cR).

It is enough to show equality after localizing at each prime ideal, and so we
may assume R is local. The sum is stabilized by all φ ∈ M e

∆,at . There is a
computation here to check this, that the elements of M e

∆,at form an algebra of

maps, but it is of the form pdd(pe − 1)te + d(pd − 1)te ≥ dpe+d − 1e. On the
other hand, clearly any J ⊆ R that is stabilized by all φ ∈ M e

∆,at contains c
since all powers of ψ live in M e

∆,at for various e. �

17. F -singularities and birational maps

Our goal in this section is to relate F -singularities and test ideals with log
canonical and log terminal singularities as well as multiplier ideals. In order
to do this, we need to explain how maps φ : F e

∗R→ R behave under birational
maps.

Proposition 17.1. Suppose that π : X̃ → X is a proper birational map and
φ ∈ HomR(F e

∗R,R). Write

KX̃ −
∑

aiEi = f ∗(KR + ∆φ)
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Then φ induces a map φ̃ : F e
∗OX̃((1− pe)

∑
aiEi)→ OX̃ which agrees with φ

where π is an isomorphism. Finally, it induces a map (which we also call φ̃)

φ̃ : F e
∗OX̃(d

∑
aiEie)→ OX̃(d

∑
aiEie).

Proof. Throughout, we remove the singular locus of X̃ if necessary so that it
is regular, and work with divisors on this locus. This is harmless though since
we are looking at maps between reflexive modules.

By assumption φ generates HomR(F e
∗R(d(pe−1)∆φe), R) ∼= F e

∗R((1−pe)(KR+
∆φ)) ∼= F e

∗R. Thus we have a section d ∈ f ∗R((1− pe)(KR + ∆φ)) ∼= OX̃ cor-
responding to φ, and furthermore this section generates. So that we obtain

a section d ∈ Γ(X̃,OX̃((1 − pe)(KX̃ −
∑
aiEi)) which generates as an OX̃-

module. However, F e
∗OX̃((1 − pe)(KX̃ −

∑
aiEi)) = H omOX (F e

∗OX̃((1 −
pe)(

∑
aiEi)),OX̃) and we obtain our first statement easily.

For the second statement, consider φ̃ : F e
∗OX̃((1−pe)

∑
aiEi)→ OX̃ . Twist-

ing by OX̃(d
∑
aiEie) gives us a map

φ̃ : F e
∗OX̃((1− pe)

∑
aiEi + ped

∑
aiEie)→ OX̃(d

∑
aiEie)

However, (1 − pe)
∑
aiEi + ped

∑
aiEie ≥ d(1 − pe)

∑
aiEi + pe

∑
aiEie =

d
∑
aiEie which gives the desired map via composition with the inclusion. �

Remark 17.2. Restrict the above map φ̃ to an Ei such that ai ≤ 0. Localizing
at the generic point of that Ei gives us a “generating” map from OX̃,Ei((1 −
pe)aiEi)→ OX̃,Ei . In other words, if we pay close attention to our embedding

into the fraction field, the divisor associated to φ̃ corresponds to
∑
−aiEi

(at least for those Ei with non-positive ai). As we’ve previously alluded to,

one can work with anti-effective divisors too, in that case φ̃ corresponds to
−
∑
aiEi.

Remark 17.3. In fact, for any effective divisor E on X̃, π∗OX̃(d
∑
aiEie + E)

is also stabilized by φ.

Remark 17.4. This immediately implies the inclusion τb(R,∆φ) ⊆ J (R,∆φ)
assuming the existence of resolutions of singularities in characteristic p > 0. In
fact, a slight modification of this implies that τb(R,∆, a

t) ⊆ J (R,∆, at) under
the assumption that KX + ∆ is Q-Gorenstein. To see this, assume that R is
local notice that for every ψ ∈ M e

∆,at , we have that ∆ψ = ∆ψ′ + 1
pe−1

div(f)

where ∆ψ′ ≥ ∆ and f ∈ adt(p
e−1)e. It easily follows from the method of the

proof and Remark 17.3 above that π∗OX̃(dKX̃−π∗(KX+∆)−tGe) is ψ-stable.

We’d now like to relate F -pure and log canonical singularities.

Theorem 17.5. [HW02] Suppose that (X,∆, at) has F -pure singularities and

that KX + ∆ is Q-Gorenstein. Further suppose that π : X̃ → X is a proper
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birational map with X̃ normal and a · OX̃ = OX̃(−G). Then if we write

KX̃ − π
∗(KX + ∆)− tG =

∑
aiEi

we have that each ai ≥ −1.

Proof. Without loss of generality, we may assume that X is the spectrum of a
local ring. We choose ψ ∈M e

∆,at which induces a surjective map ψ : F e
∗R→ R.

We notice that if we write

KX̃ − π
∗(KX + ∆ψ) =

∑
biEi

then all of the bi ≤ ai and so it suffices to prove the statement for the bi.
Suppose then that one of the bi < −1. Localize at the generic point of the

associated Ei. This gives us a DVR OX̃,Ei and a map ψ̃ : F e
∗OX̃,Ei → OX̃,Ei

that is also surjective. Furthermore, the divisor corresponding to ψ̃ is −biEi.
Therefore, our result follows from the following lemma:

Lemma 17.6. If (S,∆) is F -pure with ∆ effective, then d∆e is reduced (in
other words, the coefficients of ∆ are less than or equal to 1).

Proof. Without loss of generality we may assume that S is a DVR with pa-
rameter s. Write ∆ = λ div(s). Suppose that λ > 1, we will show that (S,∆)
is not F -pure. Let ΨS be the generating map of HomS(F e

∗S, S). Then for any
φ ∈M e

∆, we have φ( ) = ΦS(x · ) where x = usm and m ≥ d(pe− 1)λe ≥ pe.
But then clearly φ(z) ⊆ (s) for all z ∈ F e

∗S proving that no φ can be surjec-
tive. �

�

Corollary 17.7. [MvdK92] Suppose that X is a normal variety and π : X̃ →
X is a projective birational map with normal X̃. If there exists a map φ :
F e
∗OX → OX such that

(a) (X,∆φ) = (X,φ) is strongly F -regular.
(b) If we write KX̃−π∗(KX +∆) =

∑
aiEi then all ai satisfy −1 < ai ≤ 0

(note the lower bound follows from (a)).

Then Riπ∗ωX̃ = 0 for all i > 0. In fact, Riπ∗h
j(ω

q̃
X

) = 0 for all j.

Proof. The statement is local so we may assume that X is the spectrum of a

local ring R. Fix an anti-effective relatively π-ample Weil divisor E on X̃ and
choose an element d ∈ R such that divX̃(d) ≥ −E. By the first hypothesis,
there exists an n� 0 such that φn(F ne

∗ dR) = R say φn(F ne
∗ dc) = 1. Consider

the map ψ : F ne
∗ R → R defined by φ( ) = φ(cd · ), noting that ∆ψ ≥ ∆φ.

Write KX̃ − π∗(KX + ∆) =
∑
biEi and observe that −1 ≤ bi < 0 (actually,

bi = ai− 1
pne−1

divEi(cd)). We also induce a map ψ̃ : F e
∗OX̃((1−pne)

∑
biEi)→

OX̃ which sends 1 to 1. All of the ai and bi are non-positive, and so we have
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an inclusion OX̃ ⊆ OX̃((1 − pne)
∑
biEi). In fact, by construction we have

that

OX̃ ⊆ OX̃(−E) ⊆ OX̃(divX̃(d)) ⊆ OX̃((1− pne)
∑

biEi).

In particular, OX̃ is Frobenius split, and we can express the splitting as the
isomorphism

OX̃ → F ne
∗ OX̃ → F ne

∗ OX̃(−E)→ OX̃ .
Iterating this isomorphism m-times, we obtain the isomorphism

OX̃ → Fmne
∗ OX̃ → Fmne

∗ OX̃(−(1 + p+ · · ·+ pm−1)E)→ OX̃
The idea will be we can use Frobenius to amplify the amplitude of E.

Dualizing, we obtain that

ω
q̃
X
← Fmne

∗ ω
q̃
X
← Fmne

∗ ω
q̃
X

((1 + p+ · · ·+ pm−1)E)← ω
q̃
X

also an isomorphism. Taking cohomology gives us an isomorphism

hj(ω
q̃
X

)← Fmne
∗ hj(ω

q̃
X

)← Fmne
∗ hj(ω

q̃
X

)((1 + p+ · · ·+ pm−1)E)← hj(ω
q̃
X

).

Applying Riπ∗ gives us the desired conclusion since E is anti-ample and we
may take m� 0. �

We now relate the multiplier ideal and the test ideal.

Theorem 17.8. [Smi00b], [Har05], [HY03], [Tak04b] Suppose that (X0 =
SpecR0,∆0, a

t
0) is a triple in characteristic zero such that KX0 + ∆0 is Q-

Cartier. Then for all p� 0, (J (X,∆, at))p = τ(Xp,∆p, a
t
p).

Proof. We will be doing reduction to characteristic p > 0 here. We will not
write the subscript p (although will write the subscript 0). We first recall
Hara’s lemma on surjectivity of the dual Frobenius map (which we still haven’t
proved).

Lemma 17.9. [Har98] Suppose that R0 is a ring of characteristic zero, π :

X̃0 → SpecR0 is a log resolution of singularities, D0 is a π-ample Q-divisor
with simple normal crossings support. We reduce this setup to characteristic
p� 0. Then the natural map

(F e)∨ = ΦX̃ : π∗F
e
∗ωX̃(dpeDe)→ π∗ωX̃p(dDe)

surjects.

Fixing a log resolution X̃0 of X0 we write a0 · OX̃0
= OX̃0

(−G0) and reduce
this setup to characteristic p > 0. We choose c0 ∈ OX0 an element whose
power is going to be a test element in characteristic p � 0, and then further
multiply it by the product of the generators of the ai. We choose a relatively
ample divisor exceptional E0 in characteristic zero such that d−π∗(KX0 +∆0)−
tG0 +E0 − ε divX̃0

(c0)e = d−π∗(KX0 + ∆0)− tG0 +E0e and also reduce it to

characteristic p > 0. Our D0 is going to be E0−π(KX0 +∆0)−tG0−ε divX̃0
(c0).
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After reduction to characteristic p� 0, we may assume that KX +∆X is Q-
Cartier with index not divisible by p. Therefore, we may choose a φ : F e

∗R→ R
corresponding to ∆X as before. As we’ve noted, this induces a map

φ̃ : F e
∗ωX̃(d−π∗(KX+∆)−tpeG+peE+peε divX̃(c)e)→ ωX̃(d−π∗(KX+∆)−tG+E+ε divX̃(c)e)

We claim that this map can be identified with:

(F e)∨ : F e
∗ωX̃(d−peπ∗(KX + ∆)− tpeG+ peE + peε divX̃(c)e)

→ ωX̃(d−π∗(KX + ∆)− tG+ E + ε divX̃(c)e)

Given this claim, φ̃ surjects. Now argue as we did for rational singularities.

For e� 0, π∗ of the domain of φ̃ is contained inside

F e
∗ c

nadt(pe−1)e

where cn−1 is a test element. The problem is the integral closure. We need

cadt(pe−1)e ⊆ adt(p
e−1)e. But c factors as both a test element d of R as well as

the product of generators of a. Therefore, cadt(pe−1)e ⊆ dadt(pe−1)e+r where r
is the number of generators of R. The tight-closure Briançon-Skoda theorem
(which we may prove a little later, [HH90]) tells us that this is contained in
adt(p

e−1)e as desired. Then the sum of images of these maps (for e� 0) is the
test ideal.

To prove the claim, we argue as follows. Notice first that (F e)∨ : F e
∗OX̃((1−

pe)KX̃)→ OX̃ is (locally) the generating map as is φ̃ : F e
∗OX̃((pe−1)π∗(KX +

∆)− (pe − 1)KX̃)→ OX̃ . But OX̃(KX̃ + (pe − 1)π∗(KX + ∆)) ∼= F e
∗OX̃((1−

pe)KX̃) so the two maps are actually the same (up to multiplication by a unit).
From there, the more complicated maps above were then obtained by twisting
by the same Q-divisors, and then doing the same inclusions. �

Corollary 17.10. A triple (X,∆, at) in characteristic zero is Kawamata log
terminal if and only if it is of open strongly F -regular type.

Remark 17.11. The following diagram explains the singularities we understand
and the implications between them.

Canonical

��
Log Terminal

qy %-
+3

��

Rational

��

qy %-
F -Regular +3

��

F -Rational

��
Log Canonical +3

emW_

+ Gor. & normal

Du Boisem F -Pure/F -Split +3
Ya

+ Gor.

F -Injective

It is an open question whether Du Bois singularities have dense F -injective
type or whether log canonical singularities have dense F -pure type.
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18. Characteristic p > 0 analogs of LC-centers and
subadjunction

We recall the following definition (for now, we work in characteristic zero).
Most of the results found here (including more details of various proofs) can
be found in [Sch09].

Definition 18.1. Suppose (X,∆) is a pair and W ⊆ X is an irreducible
subvariety set η to be the generic point of W . We say that W is a non-KLT-

center if there exists a divisor Ei on some birational model π : X̃ → X of
X such that W = π(Ei) where the discrepancy ai ≤ −1 (as usual,

∑
aiEi =

KX̃ − π∗(KX + ∆). We say that W is an LC-center if W is a non-KLT-center
and furthermore, (X,∆)η is log canonical.

Lemma 18.2. Given a pair (X,∆) as above further assume that X is affine.
Then W ⊆ X is a non-KLT-center if and only if for every d ∈ OX such that
η ∈ V (d), we have that for every ε > 0 that the pair (X,∆ + ε divX(d))η is not
log canonical.

Proof. If W is a non-KLT-center, then the conclusion of the lemma is obvious.
Suppose conversely that W satisfies the condition of the lemma but is not an
LC-center.

If η is a codimension 1 point, then the result is also clear (no birational
models are needed). On the other hand, if (X,∆)η is not log canonical, we are
already done, so we may assume that (X,∆)η is log canonical. Choose a log

resolution π : X̃ → X of (X,∆) such that IW · OX̃ = OX̃(−E) is also a SNC
divisor (and by hypothesis, all the discrepancies of Ei such that π(Ei) = W
satisfy ai > −1). We choose a general element d of OX vanishing at η so
that π is a log resolution of (X,∆ + ε divX(d)) for every ε > 0. Because d
is general, for 0 < ε � 1 (X,∆ + ε divX(d)) is log canonical on X \W . Of
course, for Ei such that π(Ei) = W , the associated ai for (X,∆ + ε divX(d))
is still > −1 for ε > 0 small enough. But this implies that (X,∆ + ε divX(d))η
is log canonical. �

In analogy with the previous lemma, we make the following definition.

Definition 18.3. Suppose that X = SpecR is an F -finite normal scheme of
characteristic p > 0 and that ∆ ≥ 0 is a Q-divisor such that (1− pe)(KX + ∆)
is Cartier. For an element Q ∈ SpecR, we say that V (Q) = W ⊆ X is an
non-F -regular-center if for every element d ∈ Q and every ε > 0, we have that
(X,∆ + ε div(d))Q is not F -pure. It is an F -pure center if we additionally
require that (X,∆)Q is F -pure. These definitions generalize to the non-affine
setting by requiring them on affine charts.

Lemma 18.4. With notation as above, suppose that φ to be a map F e
∗L → OX

a map corresponding to ∆. Then W is a non-F -regular center if and only if
φ(F e

∗QL ) ⊆ Q.
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Proof. Without loss of generality, we may assume that R is a local ring and
thus that L = OX . Furthermore, we can localize at Q and assume that Q
is the maximal ideal of R. First we claim that φ(F e

∗Q) ⊆ Q if and only if
φn(F ne

∗ Q) ⊆ Q for some n > 0. The (⇒) direction is clear, for the reverse, if
φ(F e

∗Q) * Q, then φ(F e
∗Q) = R, but then it follows easily that φn(F ne

∗ Q) = R
for all n > 0. From this, it follows that φ(F e

∗Q) ⊆ Q if and only if for every
ψ : F e

∗OX → OX such that ∆ψ ≥ ∆φ we have that ψ(F e
∗Q) ⊆ Q.

Of course, we may assume that the ε > 0 we consider is of the form 1
pne−1

.

Now, (X,∆ + 1
pne−1

div(d)) is not F -pure if and only if φn(F ne
∗ dR) ⊆ Q. But

if we require this for all d ∈ Q, this just says that φn(F ne
∗ Q) ⊆ Q. �

Corollary 18.5. (X,∆) is strongly F -regular if and only if it has no non-F -
regular centers.

Theorem 18.6. Non-klt centers in characteristic zero reduce to non-F -regular
centers in characteristic p > 0.

Proof. It follows easily from the fact that we have the map φ̃ : F e
∗OX̃(d

∑
aiEie)→

OX̃(d
∑
aiEie), which induces for each effective divisor G,

φ̃ : F e
∗OX̃(d

∑
aiEie+G)→ OX̃(d

∑
aiEie+G).

The theorem then follows once one observes that any non-klt center can be
written as π∗OX̃(d

∑
aiEie+G) for some appropriate G. �

Here is a characteristic p > 0 version of Kawamata’s subadjunction theorem.

Theorem 18.7. Suppose that (X,∆) is a pair such that KX + ∆ is Q-Cartier
with index not divisible by p > 0. Suppose that W ⊆ X is a normal F -pure
center. Then, there exists a canonically determined divisor ∆W on W such
that KW + ∆W ∼Q (KX + ∆)|W and such that:

• (W,∆W ) is F -pure if and only if (X,∆) is F -pure near W .
• (W,∆W ) is strongly F -regular if and only if W is minimal with respect

to inclusion of F -pure centers with respect to containment.
• The set of F -pure centers of (W,∆W ) is the same as the set of F -pure

centers of (X,∆) which properly contain W .

Proof. Given a map φ : F e
∗L → OX corresponding to ∆, suppose that Q is

an ideal sheaf such that V (Q) = W . We immediately obtain a map φ|W :
F e
∗L |W → OW obtained by modding out by Q. This map φ|W corresponds

to divisor ∆W . The first statement follows from the fact that in a local ring,
φ : F e

∗R → R surjects if and only if the induced map φ : F e
∗R/Q → R/Q

surjects. The third statement follows the fact that P ⊇ Q is φ-compatible
if and only if P/Q is φ/Q-compatible, and the third statement implies the
second. �

Remark 18.8. If W is not normal, one can always induce a divisor ∆WN on
the normalization of W . Nice properties of (X,∆) still induce nice properties
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of (WN ,∆WN ) but the converse statements don’t necessarily hold (this seems
to be due to inseparability and wild ramification in the normalization map
η : WN → W ).

If one knew that log canonical implied F -pure type, one could prove a num-
ber of interesting things about log canonical centers via reduction to charac-
teristic p > 0.

This is very different from the behavior in characteristic zero. In particular,
∆W is canonically determined which is not the case in characteristic zero.
Consider the following example.

Example 18.9 (Speyer, –, Xu). Suppose that X → Spec k[t] = A1 is the
family of cones over elliptic curves defined by zy2 − x3 + txz2 with a section
σ : A1 → X mapping to the cone points. Further assume that there is a log

resolution π : X̃ → X which is obtained by blowing up the image of σ (which
we now call Z). Finally note that X is F -pure at the generic point of Z.

It then follows that Z is an F -pure center. Note that X is Q-Gorenstein
with index not divisible by p > 0, so we can set ∆ = 0. We can construct ∆W

as above. In this context, ∆W has support exactly at those points such that
the associated elliptic curve is not F -split (ie, supersingular).

Note that (X, divX(t−λ)) has a log canonical center at W = (x, y, z, t−λ).

Furthermore, by blowing up X̃ at the inverse image of that point, one obtains
a log resolution with two exceptional divisors, the one dominating Z and the
one dominating W . Both of these exceptional divisors have discrepancy −1.
It then follows that if (X, divX(t − λ)) is F -pure, the exceptional divisor is
F -split. This implies that the associated elliptic curve is also F -split. But
(X, divX(t − λ)) is F -pure if and only if (W,∆W + divW (t − λ)) is F -pure.
The latter is F -pure at W if and only if ∆W does not have divW (t − λ) as
a component. This implies that if λ corresponds to a supersingular elliptic
curve, then ∆W must have divW (t− λ) among its components.

Conversely, suppose that λ corresponds to an ordinary elliptic curve Eλ.
The generating map on the associated elliptic curve ψ : F∗OEλ → OEλ is

always the map induced by the pair (X, divX(t− λ)) on X̃ as above. On the

elliptic curve, the map ψ sends units to units, thus on X̃, the map associated
to (X, divX(t − λ)) has to send units to non-zero elements which restrict to
units on Eλ. Thus back on X, units must be sent to elements that are units
near W and the proof is complete.

We give one more application of these ideas. I do not know of an analog of
this result in characteristic zero.

Theorem 18.10. Suppose that S is a regular local ring and that R = S/I is
any reduced normal ring and ∆R is a divisor on SpecR such that KR + ∆R is
F -pure with index not divisible by p > 0. Then there exists a divisor ∆S on
S such that KS + ∆S is SpecR ⊆ SpecS is an F -pure center of (S,∆S) and
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furthermore, that ∆S and ∆R are related as in Theorem 18.7. In particular,
(R,∆R) is F -pure, then we may choose (S,∆S) also to be F -pure.

Using the same idea (Fedder’s lemma), we have the following method for
checking whether an ideal is a non-F -regular center.

Proposition 18.11. Suppose that S is a regular F -finite ring and that R =
S/I. Suppose that Q ∈ SpecS contains I. Then Q/I is a non-F -regular center
of R if and only if I [pe] : I ⊆ Q[pe] : Q for all e ≥ 0. Furthermore, if R/I is
Q-Gorenstein such that (pe− 1)KR is Cartier, then one may check that single
e > 0.

On the other hand if S is sufficiently local and if a Q-divisor ∆ on SpecR
corresponds to a map φ : F e

∗R → R. Fix d ∈ S ∈ I [pe] : I corresponding to φ.
Then Q/I is a non-F -regular center of (R,∆) if and only if d ∈ Q[pe] : Q.

Proof. The statements are local, so we may assume that S is local. But then
the result follows immediately one recalls that F e

∗ (I
[pe] : I) maps surjectively

onto HomR(F e
∗R,R). �

Remark 18.12. For a log canonical pair (X,∆), the set of LC-centers satisfy
many remarkable properties. For example, if the pair (X,∆) is log canonical:

• Any union of such centers is seminormal (and in fact, Du Bois).
• Any intersection of such centers is a union of such centers.

F -pure centers satisfy the analogous results.

One can certainly ask if other natural properties of LC-centers hold for F -
pure centers. The set of LC-centers are finite for a log canonical pair, so we
can ask the following.

Theorem 18.13. [Sch09], [MK09] If (X,∆) is sharply F -pure, then there are
finitely many F -pure centers.

Proof. Choose φ such that ∆φ ≥ ∆ and that φ(1) = 1. Note, every center of
sharp F -purity Q ∈ SpecR for (R,∆) satisfies φ(F e

∗Q) ⊆ Q. We will show
that there are finitely many prime ideals Q such that φ(F e

∗Q) ⊆ Q. First note
that if there are infinitely many such prime ideals, one can find a collection Q
of infinitely many centers which all have the same height and whose closure
(in the Zariski topology) is an irreducible subscheme of SpecR with generic
point P (ie, P is the minimal associated prime of

⋂
Q∈QQ). Notice P must

have smaller height than the elements of Q. Notice further that P also satisfies
φ(F e

∗P ) ⊆ P since it is the intersection of the elements of Q (in other words,
P is a center of sharp F -purity for (R,∆φ)).

By restricting to an open set, we may assume that R/P is normal (the
elements of Q will still form a dense subset of V (P )). Then φ induces a
divisor ∆P on SpecR/P as above. But the set of elements in Q restrict to
centers of sharp F -purity for (R/P,∆P ) by F -adjunction. As noted above,
{Q/P | Q ∈ Q} is dense in SpecR/P and simultaneously {Q/P |Q ∈ Q} is
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contained in the non-strongly F -regular locus of (R/P,∆P ), which is closed
and proper. This is a contradiction. �

19. F -rationality via alterations and finite maps

In this section, we will show that F -rationality can also be described via
alterations. First we prove the equational lemma, which lets us kill cohomology
in characteristic p > 0 by passing to finite covers, the variant we give appeared
recently in the work of Huneke-Lyubeznik, but the result has connections to the
work of Hochster and others even in the 70s, as well as the work of Hochster-
Huneke and Smith.

Theorem 19.1 (Equational-Lemma). [HL07], [HH92] Let R be a commutative
Noetherian domain containing a field of characteristic p > 0. Let K be the
fraction field of R and suppose that K̄ is the algebraic closure of K. Let I be an
ideal of R and suppose that α ∈ H i

I(R) is an element such that α, αp, αp
2
, . . .

belong to a finitely generated R-submodule of H i
I(R). Then there exists an

R-subalgebra R′ of K̄ that is a finite R-module and such that the induced map
H i(R)→ H i(R′) sends α to zero.

This proof is taken from [HL07]. Let At denote the submodule generated by
α, αp, . . . , αp

t
. By hypothesis, A0 ⊆ A1 ⊆ A2 ⊆ . . . eventually stabilizes at As

(note we may take s not divisible by p). Thus we have an equation:

g(T ) = T p
s − r1T

ps−1 − r2T
ps−2 − · · · − rs−1T

where ri ∈ R and for which α is a root. It is a key point here that g is additive
in T (because of the pth powers).

Suppose that x1, . . . , xn generate I and consider the Čech complex

0 // C0(M)
d0
// C1(M)

d1
// C2(M) // . . .

dn−1
// Cn(M) // 0

where C0(M) = M and Ci(M) = ⊕j1≤···≤jiMxj1 ...xji
(we will set M = R and

also equal to certain finite extensions of R).
Suppose that α̃ ∈ Ci(R) is a cycle that represents α. We know that g(α̃) =

di−1(β) ∈ di−1(Ci−1(R)) since g(α) = 0. Write

β = ⊕j1≤···≤ji−1

(
rj1...ji−1

(xj1 . . . xji−1
)e

)
for some (uniform) integer e.

For each tuple j1 ≤ · · · ≤ ji, consider the equation

g(
Zj1≤···≤ji−1

(xj1 . . . xji−1
)e

)−
rj1...ji−1

(xj1 . . . xji−1
)e

= 0

in the variable Zj1≤···≤ji−1
. Clearing denominators gives us monic polynomials

hj1≤···≤ji−1
in the variables Zj1≤···≤ji−1

. Let zj1≤···≤ji−1
∈ K̄ be a root of this

equation. Set R′′ to be the finite extension of R generated by all the zj1≤···≤ji−1
.
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Set ˜̃α = ⊕
(

zj1≤···≤ji−1

(xj1 . . . xji−1
)e

)
∈ Ci−1(R′′)

We also know that C
q
(R) is a subcomplex of C

q
(R′′) and so we can identify

α̃ and β with their natural images in C
q
(R′′). Thus α̃ ∈ Ci(R′′) is a cycle

representing the image of α under H i
I(R) → H i

I(R
′′). As is ᾱ = α̃ − di−1(˜̃α)

(we just subtracted a boundary, which does not change the cohomology class).

Now, g(˜̃α) = β and also g(α̃) = di−1(β), so that

g(ᾱ) = g(α̃−di−1(˜̃α)) = g(α̃)−g(di−1(˜̃α)) = g(α̃)−di−1(g(˜̃α)) = di−1(β)−di−1(β) = 0.

Write
ᾱ = ⊕ρj1≤···≤ji with ρj1≤···≤ji ∈ R′′j1...ji .

We know that g(ρj1≤···≤ji) = 0 individually so that ρj1≤···≤ji is integral over R.
Set R′ to be R′′ adjoin the ρj1≤···≤ji (this is contained in the normalization of
R′′).

By hypothesis, the image of α in H i
I(R

′) is represented by ᾱ = ⊕ρj1≤···≤ji .
We need to show that this is a boundary. However, there is an exact sub-
complex of C

q
(R′) which is simply R′ in each term, ᾱ is certainly in this

subcomplex and thus it is a boundary as desired. �

Before continuing on, we need a very brief introduction to Matlis/local-
duality. Suppose that (R,m) is a local ring. We know every R-module lives
inside an injective R-module. In particular, R/m lives inside an injective
R-module I. It turns out that there is in some sense a smallest (up to con-
tainment) injective module E containing R/m. This module is unique up to
isomorphism and is called the injective hull of R/m and will be denoted by
E = ER/m.

Theorem 19.2 (Matlis). [BH93] HomR( , E) is an exact functor which (faith-
fully) takes finitely generated R-modules to artinian R-module. Furthermore, if
R is complete, then the functor (faithfully) takes artinian R-modules to finitely
generated R-modules, induces an equivalence of categories between the two sets,
and applying it twice is an isomorphism. Finally, HomR( , E) always induces
an equivalence of the category of finite length R-modules (i.e. , Noetherian +
Artinian modules).

Theorem 19.3 (Grothendieck). [Har66] With notation as above, HomR(h−i(ω
q
R), E) ∼=

h−i(R HomR(ω
q
R , E)) = H i

m(R). More generally for M ∈ Db
coh(R) there is a

functorial isomorphism

HomR(h−jR HomR(M,ω
q
R), E) ∼= Hj

m(M).

Corollary 19.4. With notation as above, HomR(F e
∗ωR, E) ∼= Hd

m(F e
∗R).

Corollary 19.5. An F -finite ring R is F -rational if and only if it is:

(a) R is Cohen-Macaulay, and
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(b) for every finite extension R ⊆ S, the natural map T : ωS → ωR is
surjective.

Condition (b) and also be replaced by

(b*) for every generically finite proper map π : Y → SpecR, the natural
map T : π∗ωY → ωR is surjective, or

(b**) for every alteration π : Y → SpecR, the natural map T : π∗ωY → ωR
is surjective.

Proof. It is harmless to assume that R is normal (otherwise the normalization
map breaks condition (b), (b*) and (b**)).

First we will show that F -rational implies (b*) (which obviously implies (b)
and (b**)). But this is easy, simply consider the commutative diagram

F∗π∗ωY

T
��

π∗ΨY
// π∗ωY

T

��

F∗ωR
ΨR

// ωR

The image of T is clearly ΨR-stable and non-zero, and F -rational implies that
there are no proper ΨR-stable submodules.

Conversely, suppose we have conditions (a) and (b) (note that condition (b)
is automatically implied by (b*) and (b**)). Suppose that R is not F -rational.
By localizing at the generic point of the non-F -rational locus, we may assume
that (R,m) is a local d-dimensional ring which is F -rational on the punctured
spectrum. This means that ωR/τ(ωR) is supported at the maximal ideal. We
set E to be an injective hull of R/m and apply HomR( , E) to the short exact
sequence:

0→ τ(ωR)→ ωR → ωR/τ(ωR)→ 0

yielding

0← τ(ωR)∨ ← Hd
m(R)← (ωR/τ(ωR))∨ ← 0.

We knew that τ(ωR) is ΦR : F∗R→ R stable. It follows that its dual is stable
under the Frobenius action Hd

m(R) → Hd
m(F e

∗R). Its dual is a finite length
Frobenius stable submodule, thus there exists a finite extension R ⊆ S such
that (ωR/τ(ωR))∨ is sent to zero in Hd

m(S). Consider the diagram:

ωS → ωR → ωR/ Image(ωS)→ 0

The dual is

Hd
m(S)← Hd

m(R)← K ← 0.

We know that (ωR/τ(ωR))∨ is contained in K. Thus τ(ωR) = Image(ωS →
ωR). �

Remark 19.6. The submodule (ωR/τ(ωR))∨ ⊆ Hd
m(R) is often denoted by

0∗
Hd(R)

and is called the tight closure of zero in Hd
m(R).



72 KARL SCHWEDE

The proof leads us to the following question. Does there always exist a finite
map R ⊆ S such that τ(R) = Image(ωS → ωR)?

Theorem 19.7. [HL07][cf Hochster-Yao] Suppose R is an F -finite domain.
Then there always exists a finite map R ⊆ S such that τ(R) = Image(ωS →
ωR) and therefore

τ(ωR) =
⋂
R⊆S

Image(ωS → ωR).

More generally,

τ(ωR) =
⋂

f :Y→SpecR a regular alteration

Image(f∗ωY → ωR).

Proof. The statement is local so we assume that R is a local ring with maximal
ideal m.

First we show that the second statement follows from the first. To do this,
we simply observe that τ(ωR) ⊆ Image(f∗ωY → ωR) for any generically finite
proper dominant map f : Y → SpecR (this is based on the usual argument
used to prove “F -rational (⇒) rational”, which is essentially due to K. Smith,
[Smi97a]).

To see this, consider the diagram

Y

f
��

F
// Y

f
��

SpecR
F
// SpecR

where the horizontal arrows are Frobenius. It is an easy application of Grothendieck
duality that we have a commutative diagram:

F∗f∗ωY

��

f∗ΦY
// f∗ωY

��

F∗ωR
ΦR

// ωR

The image of f∗ωY → ωR is non-zero at every maximal dimensional component
of SpecR since f is generically finite and dominant. From this diagram and
the definition of the parameter test submodule it immediately follows that
Image(f∗ωY → ωR) contains τ(ωR).

It hence remains to show that we can find some finite map where the con-
tainment is indeed equality. For this we closely follow the strategy of [HL07]:
Choose η ∈ SpecR to be a generic point of the non-F -rational locus of R. We
know that (ωR/τ(ωR))∨ = 0∗Hdm(R)

(where (·)∨ denotes the Matlis dual by [].

Because the punctured spectrum of R is F -rational, ωR/τ(ωR) and thus also
0∗Hdm

(R) has finite length.
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It follows from the equational lemma above, that there exists a finite exten-

sion of reduced rings Rη ⊆ Sη such that the image of 0∗
HdimRη
η (Rη)

in H
dimRη
η (Sη)

is zero. By taking the normalization of R inside the total field of fractions of
Sη, we may assume that Sη is indeed the localization of some S ′ at η. Because

0∗
HdimRη
η (Rη)

→ H
dimRη
η (Sη) is zero, the Matlis dual map (ωS)η → (ωR/τ(ωR))η

is also zero.
By doing this for each generic point of the non-F -rational locus of R and tak-

ing a common extension, we can set S1 to be a common extension of all the S ′.
We thus have I1 := Image(ωS1 → ωR) such that the support of I1/τ(ωR) is of
strictly smaller dimension than the non-F -rational locus. Choose η1 ∈ SpecS1,
a generic point of that support and suppose that dimRη1 = d1. Therefore,
(I1/τ(ωR))η1 has finite length.

Consider the map g1 : Hd1
η1

(Rη1) → Hd1
η1

(S1
η1

) and note that the image
of ωS1)η1 → ωR/τ(ωR) has support at η1 which implies that the image of
g1(0∗

H
d1
η1

(Reta1 )
) ⊆ Hd1

η1
(S1

η1
) is also finite length.

Choose z in that image. We know z, zp, zp
2
, . . . are also contained in g1(0∗

Hd1 (Reta1 )
)

since 0∗
H
d1
η1

(Rη1 )
is stable under the Frobenius action. Therefore, there ex-

ists a finite extension S1
η1
⊆ S ′′1η1

such that z is sent to zero under the map

Hd1
η1

(S1
η1

) → Hd1
η1

(S ′′1η1
). Because (τ(ωRη1 ))∨/ ker(g1) is finite length, we can

find a common extension Sη1 ⊆ S ′1η1
which kills 0∗

H
d1
η1

(Rη1 )
. Thus the map

ωS′η1 → ωRη1 has image τ(ωRη1 ). Set S2 to be the normalization of R inside

the fraction field of S ′1. Define I2 := Image (ωS2 → ωR).
It follows that (I2/τ(ωR)) has support a strictly smaller closed subset than

(I1/τ(ωR)). Continuing in this way, Noetherian induction tells us that even-
tually τ(ωR) is the image of some map ωSn → ωR. �

20. Vanishing theorems via finite maps and direct summand
conditions

Using the methods discussed previously, one can show the following.

Proposition 20.1. [HH92] [Also see [Smi97c] and erratum on Smith’s web
page] Suppose that X is a projective variety of characteristic p > 0 and that
L is an ample line bundle. Then there exists a finite map f : Y → X such
that H i(X,L −j)→ H i(Y, f ∗L −j) is zero for all 0 < i < dimX and all j.

The only interesting part of this statement is the case when j = 0 (just take
f to be a high power of the Frobenius), and the idea of the proof is the same
as the equational lemma. Recently Bhargav Bhatt, see

http://www-personal.umich.edu/˜bhattb/math/ddscposchar.pdf

has shown that we can extend this result in the following way
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Theorem 20.2 (Bhatt). [http://www-personal.umich.edu/˜bhattb/math/ddscposchar.pdf ]
Suppose that X is a projective variety of characteristic p > 0 and L is a semi-
ample line bundle. Then there exists a finite map f : Y → X such that

• H i(X,L )→ H i(Y, f ∗L ) is zero for i > 0.
• If in addition, L is big, then we can force H i(X,L −1)→ H i(Y, f ∗L )

to be zero for i < dimX.

I’ll leave you to find the proofs on the web.
Bhatt was actually interested in the following. Consider the following con-

dition on a ring R.

Definition 20.3. Suppose that R is F -finite normal domain. We say that R
is a splinter (or DSCR = direct summand condition ring ) if R ⊆ S splits as
a map of R-modules for every finite extension R ⊆ S. Furthermore, we say
that R is a DDSCR (= derived direct summand condition ring) if R ⊆ Rf∗OY
splits as a map of objects in Db

coh(R) for every generically finite proper map
f : Y → SpecR.

Bhatt’s main result follows:

Theorem 20.4 (Bhatt). A ring in characteristic p > 0 is a DSCR (= splinter)
if and only if it is a DDSCR.

Again, I’ll refer you to his paper for the reference.
The following is the most important conjecture in tight closure theory (or a

variant of it).

Conjecture 20.5. A ring R satisfies the DSCR if and only if it is strongly
F -regular.

This conjecture is known in the Q-Gorenstein case, see [Sin99a], [HH94b].
The implication that strongly F -regular implies DSCR is easy, we prove it

below.

Lemma 20.6. Suppose that R is strongly F -regular, then R is a splinter/DSCR.

Proof. Given a finite extension R ⊆ S, fix φ : F e
∗R → R. This map induces a

map HomR(S, F e
∗R)→ HomR(S,R). We also have

F e
∗ HomR(S,R) = HomF e∗R(F e

∗S, F
e
∗R)→ HomR(F e

∗S, F
e
∗R)→ HomR(S, F e

∗R)

giving us a map F e
∗ HomR(S,R) → HomR(S,R). One can check that this

induces a commutative diagram.

F e
∗ HomR(S,R) //

��

HomR(S,R)

��

F e
∗R φ

// R

where the vertical maps are evaluation-at-1. In particular, the image of
HomR(S,R) → R is φ-stable, and so if R is strongly F -regular, that map
is surjective. �
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In mixed characteristic, one can ask a related question.

Conjecture 20.7 (Hochster). Suppose that R is a regular (local) ring in mixed
characteristic. Is it true that for every finite extension R ⊆ S, one has that
the evaluation-at-1 map HomR(S,R) → R surjects (in other words, R ⊆ S
splits).

This is probably the most important conjecture in commutative algebra.
This conjecture is known up through dimension 3 and is closely related to
a pantheon of other conjectures known as the homological conjectures. It is
obvious in dimension 1 (1-dimensional regular local rings being PIDs). Let me
prove it in dimension 2.

Proposition 20.8. Suppose that R is a regular local ring and that R ⊆ S is
a finite extension. Then R ⊆ S splits as a map of R-modules.

Proof. It is sufficient to prove the result in the case that S is normal and
reduced and so we assume that. Choose f ∈ R such that R/f is regular
(and 1-dimensional). Consider the following diagram (we do Elkik’s proof yet
again).

ωS = HomR(S,R) //

×f
��

R = ωR

×f
��

ωS = HomR(S,R) //

��

R = ωR

��

ωS/f //

��

R/f = ωR/f

��

0 0

where the bottom zeros exist because the rings in question are Cohen-Macaulay.
Now, R/f → S/f is a finite extension (S/f may not be reduced, but this

doesn’t matter), and so it splits because R/f is regular. Thus ωS/f → ωR/f
surjects. In particular, our diagram becomes.

ωS = HomR(S,R) //

×f
��

R = ωR

×f
��

// C

×f
��

// 0

ωS = HomR(S,R) //

��

R = ωR

��

// C //

��

0

ωS/f //

��

R/f = ωR/f

��

// 0

0 0

Nakayama’s lemma again implies that C is zero. �
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Remark 20.9. In fact, one can show that for a regular ring in mixed charac-
teristic for any generically finite map f∗Y → SpecR, f∗ωY → ωR surjects.

21. Tight closure

Suppose that R ⊆ S is an extension of rings. Consider an ideal I ⊆ R and
its extension IS. We always have that (IS) ∩R ⊇ I, however:

Lemma 21.1. With R ⊆ S as above and further suppose the extension splits
as a map of R-modules. Then

(IS) ∩R = I.

Proof. Fix φ : S → R to be the splitting given by hypothesis. Suppose that
z ∈ (IS) ∩ R, in other words, z ∈ IS and z ∈ R. Write I = (x1, . . . , xn),
we know that there exists si ∈ S such that z =

∑
sixi. Now, z = φ(z) =

φ (
∑
sixi) =

∑
xiφ(si) ∈ I as desired. �

A converse result holds too.

Theorem 21.2. [Hoc77] Suppose that R ⊆ S is a finite extension of approxi-
mately Gorenstein7 rings. If for every ideal I ⊆ R, we have IS ∩R = S, then
R ⊆ S splits as a map of R-modules.

Proof. See, [Hoc77] �

Consider now what happens if the extension R ⊆ S is the Frobenius map.

Definition 21.3. Given an ideal I ⊆ R, the Frobenius closure of I (denoted
IF ) is the set of all elements z ∈ R such that zp

e ∈ I [pe] for some e > 0.
Equivalently, it is equal to the set of all elements z ∈ R such that z ∈ (IR1/pe)
for some ideal I.

Remark 21.4. The set IF is an ideal. Explicitly, if z1, z2 ∈ IF , then zp
a

1 ∈ I [pa]

and zp
b

2 ∈ I [pb]. Notice that we may assume that a = b. Thus z1 + z2 ∈ IF .
On the other hand, clearly hz1 ∈ IF for any h ∈ R.

We’ll point out a couple basic facts about IF .

Proposition 21.5. Fix R to be a domain and (x1, . . . , xn) = I ⊆ R an ideal.

(i) (IF )F = IF .
(ii) For any multiplicative set W , (W−1I)F = W−1(IF ).

(iii) R is F -pure/split if and only if I = IF for all ideals I ⊆ R.

Proof. For (i), suppose that z ∈ (IF )F . Thus there exists an e > 0 such that

zp
e ∈ (IF )[pe]. In particular, we can write zp

e
=
∑
aix

pe

i for some ai ∈ R

and xi ∈ IF . Thus for each xi, there exists an ei > 0 such that xp
ei

i ∈ I [pei ].

7Nearly all rings in geometry satisfy this condition. Explicitly, a local ring (R,m) is called
approximately Gorenstein if for every integer N > 0, there exists I ⊆ mN such that R/I is
Gorenstein.
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Choosing e′ ≥ ei for all i, we have that xp
e′

i ∈ I [pe
′
]. Therefore, (zp

e
)p
e′

=

zp
e+e′

=
∑
ap

e′

i xp
e+e′

i ∈ I [pe+e
′
] as desired.

For (ii), we note that (⊇) is obvious. Conversely, suppose that z ∈ (W−1I)F ,
thus zp

e ∈ (W−1I)[pe] = W−1(I [pe]). Therefore, for some w ∈ W , wzp
e ∈ I [pe],

which implies that (wz)p
e ∈ I [pe] and the converse inclusion holds.

Part (iii) is obvious by Theorem 21.2. �

It is natural to hope that these ideas can be extended to (strong) F -
regularity.

Recall that R is strongly F -regular (a domain) if for each 0 6= c ∈ R, there
exists a map φ : F e

∗R→ R that sends c 7→ 1 for some e > 0.

Definition 21.6. [HH90] Suppose that R is an F -finite domain and I is an
ideal of R, then the tight closure of I (denoted I∗) is defined to be the set

{z ∈ R|∃0 6= c ∈ R such that czp
e ∈ I [pe] for all e ≥ 0}.

Proposition 21.7. Suppose we have an ideal (x1, . . . , xn) = I ⊆ R where R
is an F -finite domain.

(i) I∗ is an ideal containing I.
(ii) (I∗)∗ = I∗.

(iii) It is known that the formation of I∗ does NOT commute with localiza-
tion.

(iv) If R is strongly F -regular, then I∗ = I for all ideals I.

Proof. For (i), suppose that czp
e ∈ I [pe] and dyp

e ∈ I [pe] for all e ≥ 0 for certain
c, d ∈ R \ {0}. Then cd(z + y)p

e ∈ I [pe] for all e ≥ 0. Of course, clearly I∗

contains I (choose c = 1).
For (iv), suppose that z ∈ I∗ and R is strongly F -regular. Choose c 6= 0

such that czp
e ∈ I [pe] for all e ≥ 0. We know that there exists an e > 0 and

φ : F e
∗R → R which sends c to 1. Write czp

e
=
∑
aix

pe

i . Then z = φ(czp
e
) =∑

xiφ(ai) ∈ I. �

Conjecture 21.8 (Weak⇒Strong). If I∗ = I for all ideals I ⊆ R, then R is
strongly F -regular.

Remark 21.9. This conjecture is known for Q-Gorenstein rings (or even local
rings which are Q-Gorenstein on the punctured spectrum), for graded rings,
and also for rings of finite type over an uncountable field.

Definition 21.10. A finitistic test element 0 6= c ∈ R, is an element of R
such that for every ideal I and every z ∈ I∗,

czp
e ∈ I [pe]

for all e ≥ 0.

It should be highly unclear that such a test element exists. However, we
have already shown the following lemma.
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Lemma 21.11. 12 Given an F -finite domain R, there exists 0 6= c ∈ R such
that for every 0 6= d ∈ R, c ∈ φ(dR) for some φ : F e

∗R→ R.

Corollary 21.12. The c in the above lemma is a finitistic test element.

Proof. Suppose that 0 6= d ∈ R is an element of R such that dzp
e ∈ I [pe] for

all e > 0, it follows from the statement above that there exists φ : F a
∗R → R

such that φ(d) = c. Thus, for e ≥ a,

czp
e

= φ(dzp
e+a

) ∈ φ
(
I [pe+a]

)
⊆ I [pe].

�

Definition 21.13. The finitistic test ideal τf (R) is defined to be the ideal of
R generated by all finitistic test elements. It can also be described as the set
made up of all finitistic test elements and zero.

Lemma 21.14. We have τf (R) = ∩I⊆R(I : I∗).

Proof. Suppose that c ∈ τfR, then czp
e ∈ I [pe] for all e ≥ 0, in particular for

e = 0. Thus cz ∈ I and c ∈ ∩I⊆R(I : I∗).
Conversely, suppose that c ∈ ∩I⊆R(I : I∗). Choose z ∈ I∗. Then I claim

that zp
a ∈ (I [pa])∗ for all a ≥ 0. But czp

e ∈ I [pe] for all e ≥ 0 so that
cp
a
(zp

a
)p
e ∈ (I [pa])[pe] for all a, and the claim is proven. Thus czp

a ∈ I [pa] for
all a ≥ 0 because c was chosen in the intersection, which implies that c is a
finitistic test element. �

Corollary 21.15. R is weakly F -regular if and only if τf (R) = R.

We now come to the proof of Briançon-Skoda theorem via tight closure.

Theorem 21.16. [HH90] Let R be an F -finite domain, and (u1, . . . , un) =
I ⊆ R an ideal. Then for every natural number m,

Im+n ⊆ Im+n−1 ⊆ (Im)∗

and so

τ(R)Im+n ⊆ Im.

which gives a very nice statement in the case that R is F -regular (and so
τ(R) = R).

This proof is taken from [Hoc07]. For any y ∈ Im+n−1, we know that there
exists 0 6= c ∈ R such that cyl ∈ (Im+n−1)l for all l ≥ 0. Consider a monomial
ua1

1 . . . uann where a1 + · · ·+ an = l(m+ n− 1)l. Write each ai = bil+ ri where
0 ≤ ri ≤ l− 1. We claim that the sum of the bi is at least m, which will imply
that the monomial is contained in (Im)[l] for all l such that l = pe. However, if
the sum b1 + · · ·+bm ≤ m−1, then l(m+n−1) =

∑
ai ≤ l(m−1)+n(l−1) =

l(m+ n− 1)− n < l(m+ n− 1), which implies the claim.
Thus cyp

e ∈ (Im)∗ as desired. �
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Remark 21.17. Previously, in 17.8, we used this theorem on adt(pe−1)e+r where
r is the number of generators of a. The tight-closure Briancon-Skoda theorem
tells us that this is contained in adt(p

e−1)e.

21.1. Hilbert-Kunz(-Monsky) multiplicity. Recall the following defini-
tion:

Definition 21.18. Suppose that (R,m) is a d-dimensional local ring and I is
an m-primary ideal. We define the multiplicity of R (at I) to be

e(I, R) := lim
n→∞

d!(R/In)

nd
.

Note that R is regular if and only if e(m, R) = 1.

Using this as a guide, Kunz considered the following notion.

Definition 21.19. [Kun69a], [Mon83] Suppose that (R,m) is a d-dimensional
local ring. We define the Hilbert-Kunz-Monsky multiplicity of R (at m) to be

eHKM(I, R) := lim
n→infty

(R/I [pe])

ped

Kunz showed that eHKM(m, R) = 1 if R is regular (we basically also did in
the first few days of class), and Watanabe-Yoshida [WY00] (and Huneke-Yao,
[HY02]) showed the converse.

Remark 21.20. In fact, this e(I, R) can be viewed as some sort of leading co-
efficient of a polynomial computing (R/In). While it is true that (R/I [pe]) =
eHKM(I, R)ped +O(pe(d−1)), the lower order terms are not generally a polyno-
mial, unlike e(I, R)

Kunz actually thought that this limit didn’t exist, and even had a claimed
counter-example. (Un?)Fortunately, there was a mistake and Monsky later
showed that the limit did indeed exist. The reason we mention it now is the
following theorem of Hochster-Huneke.

Theorem 21.21. [HH90] Suppose (R,m) is an equidimensional F -finite local
domain. Further suppose that I ⊆ J are two m-primary ideals. Then if J ⊆ I∗

if and only if eHKM(I, R) = eHKM(J,R).

Proof. We will only prove one direction, for the converse, see [HH90]. Suppose
then that J ⊆ I∗, in other words, suppose that I∗ = J∗. We first show that
there exists a c ∈ R◦ such that cJ [q] ⊆ I [q] for all q � 0. But this is easy,
choose a set of generators x1, . . . , xk of J . Then by hypothesis, there exists a
ci ∈ R such that cix

q
i ∈ I [q] for all q � 0. Let c be the product of the ci and

note that cxqi ∈ I [q] for all q � 0. Therefore, J [q]/I [q] is a module with at most
k generators over R/(I [q] + (c)). Set S = R/(c). Thus J [q]/I [q] is a module

with at most k generators over S/(IS)[q]. Note that dimS ≤ dimR− 1.
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But now we know that there is a constant CS such that λ(S/(IS)[q] ≤
CSq

d−1 (since Hilbert-Kunz multiplicities exist). However, we can also map
(S/(IS)[q])⊕k onto J [q]/I [q]. Therefore,

λ(J [q]/I [q]) ≤ kCSq
d−1hd−1.

Thus λ(R/J [q])− λ(R/I [q]) ≤ Cqd−1 for C = kCSh
d−1.

Therefore the J and I have the same Hilbert-Kunz multiplicity. �

22. Finitistic test ideals, tight closure for modules, and tight
closure of pairs

Definition 22.1. [HH90] Given a domain R and R-modules N ⊆ M , we
consider the natural map

γe : M →M ⊗ F e
∗R

for each e. We say that z ∈M is in the tight closure of N in M if there exists
a c ∈ R \ {0} such that for all e ≥ 0, γe(z).c = z ⊗ c is contained in the image
of N ⊗ F e

∗R→M ⊗ F e
∗R.

Remark 22.2. Suppose that M = R and N is an ideal. Then the image of
N ⊗R F e

∗R inside R ⊗R F e
∗R = F e

∗R is simply N [pe]. Thus this definition of
tight closure coincides with the usual one.

The case we are going to be primarily concerned with is when N = 0 ⊆
M . Generally speaking, one can always reduce to studying this case by the
following trick.

Lemma 22.3. Suppose N ⊆ M is as above, then z ∈ N∗M if and only if
z̄ ∈ 0∗M/N .

Proof. Now, z ∈ N∗M if and only if there exists 0 6= c ∈ R such that

γe(z)⊗ c ∈ Image (N ⊗ F e
∗R→M ⊗ F e

∗R) .

But this happens if and only if ¯γe(z) = 0 ⊆ (M/N)⊗ F e
∗R by right exactness

of tensor. �

Remark 22.4. In general, given N ⊆ M ⊆ M ′, one has N∗M ( N∗M ′ . The
problem is that ⊗ is not left-exact.

Lemma 22.5. Suppose that R is strongly F -regular, then for every R-modules
N ⊆M , N = N∗M ⊆M .

Proof. Suppose that z ∈ N∗M . Thus there exists a 0 6= d ∈ R such that z ⊗ d
is contained in the image of N ⊗ F e

∗R → M ⊗ F e
∗R for all e ≥ 0. Choose

φ : F a
∗R→ R which sends d 7→ 1. We have the following diagram

N ⊗ F a
∗R

idN ⊗φ
//

f

��

N� _

g

��

M ⊗ F a
∗RidM ⊗φ

// M
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We know that z⊗d is in the image of f , let ζ be an element of N⊗F a
∗R which

maps to it. Thus

g ((idN ⊗φ)(ζ)) = (idM ⊗φ)(z ⊗ d) = z

But g is simply the inclusion of N into M which implies that z ∈ N as
desired. �

We also have the converse statement.

Proposition 22.6. [HH90], [Hoc07] Suppose R is an F -finite local domain
and that for every R-module N ⊆M , N = N∗M , then R is strongly F -regular.

Proof. Let E denote the injective hull of the residue field R/m. We know
0∗E = 0 by assumption. We will show that R is strongly F -regular.

By hypothesis, 0∗E = 0. Choose c ∈ R = F e
∗R and consider the map

R → F e
∗R which sends 1 7→ c. Tensoring with E, gives us a map γe,c : E →

E ⊗R F e
∗R which sends z to z ⊗ c. Now recall that we have an isomorphism

F e
∗R ⊗ Hom(R,E) ∼= F e

∗R ⊗R E ∼= HomR(HomR(F e
∗R,R), E) defined by the

map which sends r ⊗ φ to the map h : HomR(F e
∗R,R) → E defined by the

rule h(α) = φ(α(r)). Thus E → E ⊗R F e
∗R is identified with

E ∼= HomR(HomR(R,R), E)→ HomR(HomR(F e
∗R,R), E).

The map is just induced by the inclusion R ⊆ F e
∗R in the first entry which

sends 1 to c. Apply HomR( , E) and Matlis duality. This gives us a map

HomR̂(F e
∗ R̂, R̂)→ HomR̂(R̂, R̂) ∼= R̂ induced by evaluation at c. In particular,

γe,c is injective if and only if the evaluation-at-c-map HomR(F e
∗R,R) → R is

surjective (we can remove the completion signs due to faithful flatness).
Consider now c = 1, we know that for any z ∈ E, 0 6= z ⊗ 1 ∈ E ⊗ F e

∗R for
infinitely many e > 0. But if it holds for infinitely many e > 0, then it holds
for all e ≥ 0 since γe,1 factors through γe−1,1. Therefore, γe,1 is injective and
R is F -split.

Now, again consider γe,c. γe,c is injective if and only if it is non-zero on the
socle8 Suppose that z ∈ ker(γe,c), in other words 0 = z ⊗ c ∈ E ⊗ F e

∗R. We
claim that then also z ∈ ker(γe−1,c). However, the composition

E
g
// E ⊗ F e−1

∗ R
f
// E ⊗ F e

∗R

z � // z ⊗ c � // z ⊗ cp,

is certainly zero, and since the map f is injective (because R is F -split), this
implies that g(z) = 0.

Therefore, the set of kernels of γe,c are a descending sequence of modules
in E, an artinian module. Therefore they eventually stabilize. However, no

8The 1-dimensional submodule of E which is annihilated by m.
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element is in all the kernels because 0∗E = 0. Thus some evaluation-at-c-map
HomR(F e

∗R,R)→ R is surjective, proving that R is strongly F -regular. �

Generally speaking, using the same method as above, one can show that
AnnR 0∗E = τ(R), see for example [LS01]. In fact, any non-zero element of
τ(R) can be used to “test” tight closure in any module. Furthermore, τ(R) is
generated by exactly the elements c ∈ R such that cN∗M ⊆ N for all modules
N ⊆M , see [Hoc07].

Conjecture 22.7. The (big/non-finitistic) test ideal τ(R) is equal to the fini-
tistic test ideal τf (R).

Let us prove another variant of this below, first however, a lemma.

Lemma 22.8. Suppose that R is a d-dimensional F -finite local domain. Then
Hd

m(R)⊗ F e
∗R is naturally identified with Hd

m(F e
∗R).

Proof. Choose a system of parameters x1, . . . , xd for R, and compute local
cohomology in terms of the Čech complex with respect to those parameters.
Hd

m(R) is then identified with the cokernel of the map

⊕Rx̂i → Rx1...xd .

Tensoring that map with F e
∗R, gives us the term of the Čech complex cor-

responding to the system of parameters xp
e

1 , . . . , x
pe

d . This completes the
proof, in fact one also sees that Hd

m(R) → Hd
m(R) ⊗ F e

∗R is identified with
Hd

m(R)→ Hd
m(F e

∗R). �

Proposition 22.9. [Smi97a] Suppose that R is a d-dimensional F -finite local
domain. Then the tight closure of zero in Hd

m(R) is the unique largest non-
zero module M ⊆ Hd

m(R) such that F (M) ⊆M where F : Hd
m(R)→ Hd

m(R) =
F∗H

d
m(R) = Hd

m(F∗R) is the map induced by Frobenius.

Proof. For simplicity, we assume that R is complete, in the general case use
the faithful flatness of HomR( , E). First we show that F (0∗

Hd
m(R)

) ⊆ 0∗
Hd

m(R)
.

Suppose that z ∈ 0∗
Hd

m(R)
. Thus there exists c ∈ R such that 0 = czp

e ∈
Hd

m(R) ⊗ F e
∗R for all e ≥ 0 (by the previous lemma, we need not be careful

about tensor products). Then 0 = cp(zp)p
e ∈ Hd

m(R), so F (z) ∈ 0∗
Hd

m(R)
.

Now suppose that N is any proper submodule of Hd
m(R) such that F (N) ⊆

N . We know that T := HomR(Hd
m(R)/N,E) ⊆ HomR(Hd

m(R), E) = ωR. But
ωR is rank-one, so there exists a c ∈ R such that cωR ⊆ T , thus we have the
composition

cωR ⊆ T ⊆ ωR.

Dualizing again, we get

Hd
m(R)→ Hd

m(R)/N → cHd
m(R)

where the composition is multiplication by c. This implies that N is annihi-
lated by c. Thus if z ∈ N , czp

e
= cF e(z) ∈ cF e(N) ⊆ cN = 0 for all e ≥ 0,

implying that z ∈ 0∗
Hd

m(R)
and completing the proof. �
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Finally, we briefly define tight closure of pairs.

Definition 22.10. [Tak04b], [HY03], [Sch08b], [Sch08a], [HH90] Suppose R
is an F -finite domain, X = SpecR and (X,∆, at) is a triple. Further suppose
that M is a (possibly non-finitely generated) R-module and that N is a sub-
module of M . We say that an element z ∈M is in the (∆, at)-tight closure of

N in M , denoted N∗∆,a
t

M , if there exists an element 0 6= c ∈ R such that, for
all e� 0 and all a ∈ adt(p

e−1)e, the image of z via the map

(F e
∗ i) ◦ Fe∗(×ca) ◦ F e : M // M ⊗R F e

∗R
F e∗ (×ca)

// M ⊗R F e
∗R // M ⊗R F e

∗R(d(pe − 1)∆e)

is contained inN
[q]∆
M , where we defineN

[q]∆
M to be the image ofN⊗RF e

∗R(d(pe − 1)∆e)
inside M ⊗R F e

∗R(d(pe − 1)∆e).
Most of the theory of test elements / ideals can be generalized to this setting,

although some of the arguments used so far do not work. See [HY03], [Tak04b],
[Sch08b] and [Sch08a] for some additional discussion.

23. Hara’s surjectivity lemma

Our goal is to show the following theorem.

Lemma 23.1. [Har98] Suppose that R0 is a ring of characteristic zero, π :

X̃0 → SpecR0 is a log resolution of singularities, D0 is a π-ample Q-divisor
with simple normal crossings support. We reduce this setup to characteristic
p� 0. Then the natural map

(F e)∨ = ΦX̃ : π∗F
e
∗ωX̃(dpeDe)→ π∗ωX̃p(dDe)

surjects.

We will show it in the following way. We follow Hara’s proof.

Proposition 23.2. Suppose that X is a d-dimensional smooth variety (quasi-
projective) of finite type over a perfect field k of characteristic p > 0. 9 Further
suppose that E =

∑
Ej is a reduced simple normal crossings divisor on X.

Suppose in addition that D is a Q-divisor on X such that Supp(D − bDc) =
Supp({D}) ⊆ Supp(E).

Additionally, suppose that the following two vanishings hold:

(a) Hj(X,Ωi
X(logE)(−E − b−Dc)) = 0 for i+ j = d+ 1 and j > 1.

(b) Hj(X,Ωi
X(logE)(−E − b−pDc)) = 0 for i+ j = d and j > 0.

Then, the natural map

H0(X,F∗ωX(dpDe))
= HomOX (F∗OX(b−pDc), ωX)
→ HomOX (OX(b−Dc), ωX)
= H0(X,ωX(dDe))

9We may as well assume k = Fp for simplicity, we’ll only want this for finite fields, and all
the arguments are essentially the same as over Fp.
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surjects.

Our plan is as follows:

(i) Prove the proposition.
(ii) Show for an ample Q-divisor D reduced from characteristic p � 0,

conditions (a) and (b) hold.
(iii) The e-iterated version of Hara’s lemma will then follow from composing

the surjectivity from the proposition and composition of maps.

In order to prove the proposition, we will need to briefly recall the Cartier
operator. From here on out, X and E are as in Proposition 23.2. Consider
the (log)de-Rham complex, Ω

q
X(logE). This is not a complex of OX-modules

(the differentials are not OX-linear). However, the complex

F∗Ω
q
X(logE)

is a complex of OX-modules (notice that d(xp) = 0).

Definition-Proposition 23.3. [Car57], [Kat70] [cf [EV92], [BK05]] There is
a natural isomorphism (of OX-modules):

C−1 : Ωi
X(logE)→ Hi(F∗Ω

q
X(logE))

Furthermore, (C−1)−1 for i = d and E = 0, induces a map F∗ωX → Hd(F∗Ω
q
X(logE)) ∼=

ωX which corresponds to the natural dual of Frobenius10.

Let us explain how to construct this isomorphism C−1. We follow [EV92,
9.13] and [Kat70]. We begin with C−1 in the case that i = 1 and E = 0.
We work locally on X (which we assume is affine) and we define C−1 by its
action on dx ∈ Ωi

X(logE), x ∈ OX ; C−1(dx) = xp−1dx (or rather, its image in
cohomology). In the E 6= 0 case, if t is a local parameter of E, then we define
C−1(dt

t
) = dt/t.

We should show that C−1 is additive, we start in the E = 0 case. First
notice that d(xp−1dx) = 0 so at least the image of xp−1dx is in the cohomology
of the de Rham complex.

Now, C−1(d(x) + d(y)) = C−1(d(x + y)) = (x + y)p−1d(x + y), we need to
compare this to xp−1dx+ yp−1dy. Write f = 1

p
((x+ y)p − xp − yp) (where the

1
p

just formally cancels out the ps in the binomial coefficients). Then

df = d
∑

i,j>0,i+j=p

γix
iyp−i =

( ∑
i>0,j>0,i+j=p−1

γiix
i−1yp−i

)
dx+

( ∑
i>0,j>0,i+j=p−1

γip− ixiyp−i−1

)
dy

where γi = 1
p

(
p
i

)
= (p−1)(p−2)...1

i!(p−i)! = 1
p−i

(
p−1
i

)
= 1

i

(
p−1
p−i

)
. Thus

df = (x+ y)p−1(dx+ dy)− xp−1dx− yp−1dy.

Therefore, xp−1dx+yp−1dy and (x+y)p−1d(x+y) are the same in cohomology.

10This is important, it gives us a “canonical” map between these two modules (before it was
always defined up to multiplication by units)
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For the E 6= 0 case and t a defining equation of a component of E, simply
observe that

C−1(dt) = C−1

(
t
dt

t

)
= tpC−1

(
dt

t

)
= tp

dt

t
= tp−1dt,

which at least shows that the definition of C−1 we gave is compatible, the
additivity follows.

We define C−1 for i > 1 using wedge powers of C−1 for i = 1. We should
also show that all these C−1 are isomorphisms. For simplicity, we work with
the case that X = Fp[x, y] and E = 0 (see [EV92] or [Kat70] for how to reduce
the polynomial ring case in general), let us explicitly see that the first C−1 is
an isomorphism.

First we show that C−1 is injective. Suppose that C−1(fdx+gdy) = 0, which
means C−1(fdx + gdy) = dh for some h ∈ OX . Thus fpxp−1dx + gpyp−1dy =
dh = ∂h

∂x
dx+ ∂h

∂y
dy. Now, we know fpxp−1 =

∑
λi,jy

ipxjp+p−1 = ∂h
∂x

, but this is

ridiculous because we claim that this is the derivative of some h with respect
to x. If you take a derivative of some polynomial in x with respect to x, no
output can ever have xjp+p−1 in it.

The surjectivity of C−1 is more involved. See for example, [Kat70], [Car57]
or [EV92], [BK05], and follows similar lines to the proof of the next lemma.
The isomorphism of the higher C−1 is an application of the Künneth formula.

We also need the following lemma.

Lemma 23.4. [Har98, Lemma 3.3] With notation as in Proposition 23.2,
additionally let B =

∑
rjEj be an effective integral divisor supported on E

such that each 0 ≤ rj ≤ p − 1. It follows that the inclusion of complexes (of
OpX-modules)

Ω
q
X(logE) �

�
// (Ω

q
X(logE))(B) := (Ω

q
X(logE))⊗OX OX(B)

is a quasi-isomorphism.

Proof. First we explain the differential on (Ω
q
X(logE))(B) because the tensor

product with B is as an OX-module, it is not so clear what the differential is.
However, we simply restrict the differential from i∗Ω

q
X\E to (Ω

q
X(logE))(B).

Now, the question is local, so we assume that X is the spectrum of a local
ring. Choose t1, . . . , td to be local parameters (which also form a p-basis),
where the components Ei of E are defined by t1, . . . , tr respectively. Consider
the complexes:

K
q

j =

[
0→

p−1⊕
i=0

tijO
p
X →

p−1⊕
i=0

(tij
dtj
t
εj
j

)OpX

]
where the middle-map is the usual d and where εj = 1 if j ≤ r and is zero
otherwise. Set

J
q
j = t

−rj
j K

q
j ,

for j ≤ r.
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We certainly have inclusions K
q

j ⊆ J
q
j , we claim that these are actually

quasi-isomorphisms. We work in a very specific case, that of k[x, y] where
E = ÷X. We only look at K1, of course the general case is exactly the same.
We have the inclusion of complexes:

⊕p−1
i=0x

iOpX� _

��

//
⊕p−1

i=0 x
i dx
x� _

��

⊕p−1
i=0x

i−rOpX //
⊕p−1

i=0 x
i−r−1dx.

One can easily verify that the cokernel and kernel of the two rows “line-up”
because r is between 0 and p− 1. Thus we have proved our claim.

Now, we claim that

Ω
q
X(logE) = K

q
1 ⊗OpX K

q
2 ⊗ . . .⊗OpX K

q
d .

We’ll check this forX = SpecFp[x, y] andE = 0. Here K1 =
[⊕p−1

i=0 x
iOpX →

⊕p−1
i=0 (xidx)OpX

]
,

and likewise K2 =
[⊕p−1

i=0 y
iOpX →

⊕p−1
i=0 (yidy)OpX

]
. Thus K

q
1 ⊗K

q
2 is the

complex associated to the double-complex

K 1
1 ⊗OpX K 0

2
∼= (dx)OX K 1 ⊗OpX K 2 ∼= (dx ∧ dy)OX

K 0
1 ⊗OpX K 0

2
∼= OXar[u] // K 0

1 ⊗OpX K 1
2
∼= (dy)OX

The general case is similar, but messy to write down.
Arguing similarly, we have that

Ω
q
X(logE)(B) ∼= J

q
1 ⊗ . . .J

q
r ⊗K

q
r+1 ⊗ . . .K

q
d

and we have the natural (compatible) inclusion Ω
q
X(logE) → Ω

q
X(logE)(B)

which are quasi-isomorphisms by the Künneth formula. �

Now consider the following setup:
Let D be a Q-divisor such that Supp({D}) ⊆ Supp(E). Set B = −pb−Dc+
b−pDc = pdDe−dpDe and note it is an effective divisor supported in E whose
coefficients are between 0 and p − 1. Therefore, (p − 1)E − B is also such a
divisor. Thus we have a quasi-isomorphism:

F∗Ω
q
X(logE) ⊆ F∗(Ω

q
X(logE)((p− 1)E −B)).

Therefore, composition with C−1 gives us an isomorphism

Ωi
X(logE) ∼= Hi (F∗(Ω

q
X(logE)((p− 1)E −B))) .

Twisting by OX(−E + dDe), we get an isomorphism

Ωi
X(logE)(−E + dDe)

∼= Hi (F∗(Ω
q
X(logE)((p− 1)E −B − pE + pdDe)))
∼= Hi (F∗(Ω

q
X(logE)(−E + dpDe)) .
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We denote the ith cocycle and coboundary of F∗(Ω
q
X(logE)(−E + dpDe) by

Z i and Bi respectively. Thus we have the following sequences for all i.

0→ Z i → F∗(Ω
i
X(logE)(−E + dpDe))→ Bi+1 → 0

0→ Bi → Z i → Ωi
X(logE)(−E + dDe)→ 0

The second sequence, for i = d, is simply
(6)
0→ Bd → Zd = F∗(Ω

d
X(logE)(−E+dpDe)) = F∗ωX(dpDe)→ ωX(dDe)→ 0.

Now assume

(a) Hj(X,Ωi
X(logE)(−E + dDe)) = 0 for i+ j = d+ 1 and j > 1.

(b) Hj(X,Ωi
X(logE)(−E + dpDe)) = 0 for i+ j = d and j > 0.

We will prove that

H0(X,F∗ωX(dpDe))
= HomOX (F∗OX(b−pDc), ωX)
→ HomOX (OX(b−Dc), ωX)
= H0(X,ωX(dDe))

surjects.

Proof. Therefore, to show that we have our desired surjectivity, it is sufficient
to show that H1(X,Bd) = 0. Thus, by the first short exact sequence, to show
this, it is sufficient to show thatH2(X,Zd−1) = 0 andH1(X,F∗(Ω

d−1
X (logE)(−E+

dpDe))) = 0. The second of these is zero by hypothesis.
To show that H2(X,Zd−1) = 0, by the second short exact sequence, it is

sufficient to show that 0 = H2(X,Bd−1) = H2(X,Ωd−1
X (logE)(−E + dDe)).

The second of these is zero by hypothesis. Continuing in this way, to show
that H2(X,Bd−1) = 0, it is sufficient to show that H3(X,Zd−2) = 0, for which
it is sufficient to show that H3(X,Bd−2) = 0, which eventually vanishes at
Hd+1(X,Z0) = 0. �

Now, all we have to show is that our desired vanishings (a), (b) actually
hold (for p� 0). For D ample (b) should hold by Serre-vanishing for p large
and (a) should hold by Kodaira-Akizuki-Nakano:

Theorem 23.5. [DI87], [Har98] Suppose that X is d-dimensional and projec-
tive over a Noetherian affine scheme, and let D be an ample Q-divisor with
Supp({D}) ⊆ Supp(E) (where E is as before, a SNC divisor). Assume that
E ⊆ X admits a lifting to W2(k).11 Then if i+ j > d and p > d, then

Hj(X,Ωi
X(logE)(−E + dDe)) = 0.

11This means there exists a smooth scheme X̃ and a SNC divisor Ẽ =
∑

i Ẽi over SpecW2(k)

with X̃ = X ×k W2(k) and Ẽi = Ei ×k W2(k).
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Proof. The result will be a corollary of the following result of Deligne-Illusie,
with notation as above we have a quasi-isomorphism of OX-modules:

d⊕
i=0

Ωi
X(logE)[−i] ∼= F∗Ω

q
X(logE).

To see this, notice that we already had a quasi-isomorphism

F∗Ω
q
X(logE) ∼= F∗(Ω

q
X(logE))((p− 1)E −B))).

Twisting by OX(−E + dDe) gives us a quasi-isomorphism

d⊕
i=0

Ωi
X(logE)(−E + dDe)[−i] ∼= F∗Ω

q
X(logE)(−E + dpDe).

Taking (hyper-)cohomology, we get

⊕i+j=mHj(X,Ωi
X(logE)(−E + dDe)) ∼= Hm(X,Ω

q
X(logE)(−E + dpDe)).

Remember, we are trying to show that the terms of the left side are zero for
i+ j = m > d. But we also have the Hodge-to-De Rham spectral sequence

Eji
1 := Hj(X,Ωi

X(logE)(−E + dpDe)⇒ Hm(X,Ω
q
X(logE)(−E + dpDe))

and so it suffices to show that the terms Hj(X,Ωi
X(logE)(−E+ dpDe) vanish

for i+ j > d. Repeating this process, it suffices to show that the terms

Hj(X,Ωi
X(logE)(−E + dpeDe)

vanish for i+ j > d and e� 0. But this is obvious by Serre vanishing. �

We now do the following reduction to characteristic p� 0 statement.

Lemma 23.6. [Har98] Begin with X,E,D as before, but in characteristic zero.
The following vanishings hold for reduction to characteristic p� 0.

(a) Hj(Xp,Ω
i
Xp

(logEp)(−Ep + dpeDpe)) = 0 for i+ j > d and e ≥ 0.

(b) Hj(Xp,Ω
i
Xp

(logEp)(−Ep + dpe+1Dpe) = 0 for j > 0 and e ≥ 0.

Proof. The reason that these do not follow from standard reduction to char-
acteristic p is because the twisting p involved depends on the actual sheaf in
question. We need uniform vanishing results! Suppose A is the finitely gener-
ated Z-algebra over which we do the reduction mod p (ie, XA ⊗A C = X and
XA ⊗A A/p = Xp for some maximal ideal p ∈ SpecA).

Consider the quasi-coherent sheaf

FA =
⊕
n≥0

Ωi
XA/A

(logEA)(−EA + dnDAe).

For each j, Hj(XA,FA) is a finitely generated module of R(XA, DA) :=
⊕H0(XA,OXA(bnDAc)) which itself is a finitely generated A-algebra (remem-
ber, DA is ample). So by generic freeness, we may assume that FA is (locally)
A-free, and thus each graded piece Ωi

XA/A
(logEA)(−EA + dnDAe) is also (lo-

cally) A-free.
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Therefore,

Hj(XA,Ω
i
XA/A

(logEA)(−EA+dnDAe))⊗AA/bp = Hj(Xp,Ω
i
Xp(logEp)(−Ep+dnDpe).

In particular, if the given vanishing (for a fixed n) holds for some p, they hold
for all maximal p ∈ SpecA. To prove (a), we’d need to show that the required
lifting properties are satisfied, for some p. But for a sufficiently general p, the
lifting properties required are satisfied!

For condition (b), we know that there exists an n0 ≥ 0 such that

Hj(XA,Ω
i
XA/A

(logEA)(−EA + dnDAe)) = 0

for some j > 0 and all n ≥ n0. But then since the characteristic of A/p ≥ n0

for a Zariski-dense set of p ∈ SpecA, we are done. �

24. Globally F -regular varieties

Definition 24.1. Let (X,∆) be a pair, where X is a normal irreducible F -
finite scheme of prime characteristic p and ∆ is an effective Q divisor on X.
The pair (X,∆) is globally F -regular if, for every effective divisor D, there
exists some e > 0 such that the natural map OX → F e

∗OX(d(pe − 1)∆e + D)
splits (in the category of OX-modules).
X itself is called globally F -regular if (X, 0) is globally F -regular.

Lemma 24.2. If (X,∆) is globally F -regular, then (X,∆′) is globally F -
regular for any ∆′ ≤ ∆. The corresponding statement for globally sharply
F -split pairs also holds.

Proof. This follows easily from the following simple observation: If a map of

coherent sheaves L
g→ F on a schemeX splits, then there is also a splitting for

any map L
h→M through which g factors. Indeed, factor g as L

h→M
h′→ F .

Then if s : F → L splits g, it is clear that the composition s ◦ h′ splits h.
Now we simply observe that if ∆′ ≤ ∆, we have a factorization

OX → F e
∗OX(d(pe − 1)∆′e+D) ↪→ F e

∗OX(d(pe − 1)∆e+D),

so the result follows. �

Remark 24.3. On an affine variety, Globally F -regular is the same as strongly
F -regular (one can certainly take D = div(c) for various c ∈ OX , and every
effective divisor D is less than or equal to a Cartier divisor). However, since
every globally F -regular variety is clearly F -split, not every (locally) strongly
F -regular variety is globally F -regular.

We now establish a useful criterion for global F -regularity, generalizing well-
known results for the local case [HH89, Theorem 3.3] and the “boundary-free”
case [Smi00a, Theorem 3.10].

Theorem 24.4. The pair (X,∆) is globally F -regular if (and only if) there
exists some effective (usually ample) divisor C on X satisfying the following
two properties:
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(i) There exists an e > 0 such that the natural map

OX → F e
∗OX(d(pe − 1)∆ + Ce)

splits.
(ii) The pair (X \ C,∆|X\C) globally F -regular (for example, affine and

locally F -regular).

Proof of Theorem 24.4. Let XC denote the open set complimentary to C. Now
fix any effective divisor C ′ on X. By hypothesis (ii), we can find e′ and an
OX-module homomorphism φ : F e′

∗ OXC (d(pe′−1)∆|XC +C ′|XCe)→ OXC that
sends 1 to 1. In other words, φ is a section of the reflexive sheaf

H omOX (F e′

∗ OX(d(pe′ − 1)∆ + C ′e),OX)

over the open set XC . Thus on the non-singular locus U of X (really, we need
the Cartier locus of C), we can choose m0 > 0 so that φ|U is the restriction of
a global section φm of

H omOU (F e′

∗ OU(d(pe′ − 1)∆ + C ′e),OU)⊗OU(mC)

∼= H omOU (F e′

∗ OU(d(pe′ − 1)∆ + C ′e),OU(mC))
(7)

over U , for all m ≥ m0; see [Har77, Chapter II, Lemma 5.14(b)]. Note that
φm still sends 1 to 1. Now, since the involved sheaves are reflexive, this sec-
tion extends uniquely to a global section of H omOX (F e′

∗ OX(d(pe′ − 1)∆ +
C ′e),OX(mC)), also denoted φm over the whole of X.

Consider an m of the form m = p(n−1)e + . . . pe + 1, where e is the number
guaranteed by hypothesis (i). Tensoring the map φm from Equation (7) with
OX(d(pne − 1)∆e), we have an induced map

F e′

∗ OX(d(pe′ − 1)∆e+ C ′ + pe
′d(pne − 1)∆e)→ OX(d(pne − 1)∆ +mCe).

Now, as in Lemma 24.2, it follows that there is a map

ψ : F e′

∗ OX(d(pne+e′ − 1)∆ + C ′e)→ OX(d(pne − 1)∆ +mCe)

which sends 1 to 1.
By composing the splitting from hypothesis (i) with itself (n− 1)-times and

after twisting appropriately (compare with [Tak04b, Proof of Lemma 2.5] and
[Sch09]), we obtain a map

θ : F ne
∗ OX(d(pne−1)∆+(p(n−1)e+· · ·+pe+1)Ce) = F ne

∗ OX(d(pne−1)∆+mCe)→ OX
which sends 1 to 1.

Combining the maps θ and ψ, we obtain a composition

F ne+e′
∗ OX(d(pne+e′ − 1)∆ + C ′e)

Fne∗ (ψ∆)
// F ne
∗ OX(d(pne − 1)∆ +mCe) θ

// OX

which sends 1 to 1 as desired. The proof is complete. �
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Theorem 24.5. Let X be a normal scheme quasi-projective over an F -finite
local ring with a dualizing complex and suppose that B is an effective Q-divisor
on X.

(i) If the pair (X,B) is globally F -regular, then there is an effective Q-
divisor ∆ such that (X,B + ∆) is globally F -regular with KX +B + ∆
anti-ample.

(ii) Similarly, if (X,B) is globally sharply F -split, then there exists an
effective Q-divisor ∆ such that (X,B + ∆) is globally sharply F -split
with KX +B + ∆ Q-trivial.

In both (i) and (ii), the denominators of the coefficients of B + ∆ can be
assumed not divisible by the characteristic p.

Proof of Theorem 24.5. First, without loss of generality, we may assume that
the Q-divisor B has no denominators divisible by p, we won’t prove this here
but it is straightforward.

We first prove statement (ii), which follows quite easily. Suppose that (X,B)
is globally sharply F -split. Consider a splitting

OX // F e
∗OX // F e

∗OX((pe − 1)B)
φ
// OX

where (pe−1)B is an integral divisor. Apply H omOX ( ,OX) to this splitting.
We then obtain the following splitting,

OX F e
∗OX((1− pe)KX)oo F e

∗OX((1− pe)(KX +B))oo OX .
φ∨
oo

The image of 1 under φ∨ determines a divisor D′ which is linearly equivalent
to (1− pe)(KX +B). This produces a composition

(8) OX F e
∗OX(D′ + (pe − 1)B)oo F e

∗OX(D′)oo OX .
φ∨
oo

Set ∆1 = 1
pe−1

D′. Then the pair (X,B + ∆1) is globally sharply F -split with

the splitting given by Equation (8). But also, it is log Calabi Yau, since

KX +B + ∆1 ∼Q KX +B +
1

pe − 1
(1− pe)(KX +B) = 0.

This completes the proof of (ii).
More work is required to prove (i). Suppose that (X,B) is globally F -

regular. Then it is also globally sharply F -split, and we may pick ∆1 as in (ii).
Choose H to be a very ample effective divisor such that Supp ∆1 ⊆ SuppH.
Consider a splitting

OX // F f
∗OX(H) // F f

∗OX((pf − 1)B +H)
ψ
// OX ,
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such that (pf − 1)B is integral. Apply H omOX ( ,OX) to this splitting to
obtain a dual splitting,
(9)

OX F f
∗OX((1− pf )KX −H)oo F f

∗OX((1− pf )(KX +B)−H)oo OX
ψ∨
oo

The image of 1 under ψ∨ determines a divisor D′′ which is linearly equivalent
to (1− pf )(KX +B)−H. Set ∆2 = 1

pf−1
D′′. Note that

KX +B + ∆2 ∼Q
−1

pf − 1
H

which is anti-ample. Also note that the splitting in line (9) demonstrates the
pair (X,B + ∆2) to be globally sharply F -split. Even better, line (9) also
demonstrates (X,B + ∆2 + 1

pf−1
H) to be globally sharply F -split.

We now make use of Lemma 24.6 below to complete the proof. In addition
to the globally F -regular pair (X,B), we have constructed divisors ∆1 and ∆2

satisfying

(i) (X,B + ∆1) is globally sharply F -split with KX +B + ∆1 ∼Q 0; and
(ii) (X,B + ∆2) is globally sharply F -split with KX +B + ∆2 anti-ample.

(iii) (X,B+ ∆2 + δH) is globally sharply F -split for some small positive δ.

Now we apply Lemma 24.6(i) to the divisors described in (i) and (iii) above.
We thus fix positive rational numbers ε1, ε2, with ε1 + ε2 = 1 such that

(X, ε1(B + ∆1) + ε2(B + ∆2 + δH)) = (X,B + ε2∆2 + ε1∆1 + ε2δH)

is globally sharply F -split. Since the support of ∆1 is contained in the support
of H, it follows from Lemma 24.2 that

(10) (X,B + ε2∆2 + (ε1 + ε′)∆1)

is globally sharply F -split for some small positive ε′. But also (X,B + ε2∆2)
is globally F -regular, as one sees by applying Lemma 24.6(iii) to the globally
F -regular pair (X,B) and the globally sharply F -split pair (X,B + ∆2).

Finally, another application of Lemma 24.6(iii), this time to the globally
F -regular pair (X,B+ ε2∆2) and the globally sharply F -split pair of line (10),
implies that (X,B+ ε2∆2 + ε1∆1) is globally F -regular. Set ∆ = ε1∆1 + ε2∆2.
We conclude that the pair (X,B + ∆) is globally F -regular, and

KX +B + ∆ = ε1(KX +B + ∆1) + ε2(KX +B + ∆2)

is anti-ample (from (i) and (ii) just above). This completes the proof of (i)
and hence Theorem 24.5. �

Lemma 24.6. Consider two pairs (X,B) and (X,D) on a normal F -finite
scheme X.

(i) If both pairs are globally sharply F -split, then there exist positive ratio-
nal numbers ε arbitrarily close to zero such that the pair (X, εB+ (1−
ε)D) is globally sharply F -split.
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(ii) If (X,B) is globally F -regular and (X,D) is globally sharply F -split,
then there exist positive rational numbers ε arbitrarily close to zero such
that the pair (X, εB + (1− ε)D) is globally F -regular.

(iii) In particular, if (X,B) is globally F -regular and (X,B+ ∆) is globally
sharply F -split, then (X,B + δ∆) is globally F -regular for all rational
0 < δ < 1.

In (i) and (ii), the number ε can be assumed to have denominator not divisible
by p.

Proof of Lemma 24.6. First note that (iii) follows from (ii) by taking D to be
(B+ ∆). Since (1− ε) can be taken to be arbitrarily close to 1, we can choose
it to exceed any given δ < 1. Hence, the pair (X,B+δ∆) is globally F -regular
for all positive δ < 1, by Lemma 24.2.

For (i), we prove that we can take ε to be any rational number of the form

(11) ε =
pe − 1

p(e+f) − 1

where e and f are sufficiently large and divisible (but independent) integers.
Take e large and divisible enough so there exists a map φ : F e

∗OX(d(pe −
1)Be)→ OX which splits the mapOX → F e

∗OX(d(pe−1)Be). Likewise, take f
large and divisible enough so there exists a map ψ : F f

∗OX(d(pf−1)De)→ OX
which splits the map OX → F f

∗OX(d(pf − 1)De).
Consider the splitting

OX // F e
∗OX(d(pe − 1)Be) φ

// OX .

Because all the sheaves above are reflexive and X is normal, we can tensor
with OX(d(pf − 1)De to obtain a splitting

OX(d(pf − 1)De) // F e
∗OX(d(pe − 1)Be+ ped(pf − 1)De) // OX(d(pf − 1)De).

Applying F f
∗ to this splitting, and then composing with ψ we obtain the fol-

lowing splitting,

OX // F e+f
∗ OX(d(pe − 1)Be+ ped(pf − 1)De) // OX

However, we also note that

d(pe − 1)Be+ ped(pf − 1)De ≥ d(pe − 1)B + pe(pf − 1)De

which implies that we also have a splitting

OX // F e+f
∗ OX(d(pe − 1)B + pe(pf − 1)De) // OX

If we then multiply (pe − 1)B + pe(pf − 1)D by 1
p(e+f)−1

, the proof of (i) is

complete for the choice of ε given in line 11.
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Now, to prove (ii), we use Theorem 24.4. Choose an effective integral divisor
C whose support contains the support of D and such that the pair (X \
C,D|X\C) is globally F -regular. Since there exists a splitting of

OX → F f
∗OX(d(pf − 1)B + Ce),

it follows that the pair (X,B + 1
pf−1

C) is globally sharply F -split. Applying

part (i) of the Lemma to the pairs (X,B + 1
pf−1

C) and (X,D), we conclude

that

(X, ε(B +
1

pf − 1
C) + (1− ε)D)

is globally sharply F -split. Re-writing, we have

(X, εB + (1− ε)D + ε′C)

is globally sharply F -split for ε and ε′ arbitrarily close to zero.
We now apply Theorem 24.4 to the pair (X,∆) = (X, εB + (1 − ε)D).

Restricted to X \C, this pair is globally F -regular, and we’ve just shown that
for sufficiently small ε′, the pair (X,∆+ε′C) is globally sharply F -split. Using
Lemma 24.4 we conclude that (X,∆) is globally F -regular.

Finally, note that because of the explicit choice of ε in line (3), it is clear its
denominator can be assumed not divisible by p. �

Corollary 24.7. If X is globally F -regular, then X there exists a divisor
∆ ≥ 0 such that (X,∆) is log Fano.

Straightforward techniques involving cones imply the following converse.

Theorem 24.8. Let X be a normal projective variety over a field of charac-
teristic zero. If (X,∆) is a Kawamata log terminal pair such that KX + ∆ is
anti-ample (ie, (X,∆) is log Fano), then (X,∆) has globally F -regular type.

Proof. The idea of the proof is the following lemma. X in characteristic p > 0
is globally F -regular if and only if the section ring with respect to an ample
divisor is strongly F -regular. Also, for X in characteristic zero, (X,∆) is log
Fano if and only if the section ring pair (S,∆S), associated to an ample divisor,
is Kawamata log terminal. Now reduce to characteristic p� 0. �

Theorem 24.9. Let X be a normal projective variety over a field of prime
characteristic. Let L be a Cartier divisor on X such that L ∼Q M + ∆, where
M is a nef and big Q-divisor and the pair (X,∆) is globally F -regular. Then
H i(X,OX(−L)) = 0 for i < dimX.

Proof. Because L is big, we can fix f � 0 so that there exists an effective E
linearly equivalent to pfL. By taking f larger if necessary, we can also assume
that for all large and sufficiently divisible e,

(1) pf (pe − 1)∆ and pf (pe − 1)M are integral,
(2) OX(pf (pe − 1)L) ∼= OX(pf (pe − 1)(M + ∆)).
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Since M is nef and big, there exists an effective divisor D such that nM−D
is ample for all n � 0; see [Laz04, Cor 2.2.7]. Because (X,∆) is globally
F -regular, for all sufficiently large integers g, the map

OX → F g
∗OX(d(pg − 1)∆e+D + E)

splits. By choosing g large enough, we may assume that g = f + e where f is
the fixed integer above and e > 0 is such that both (1) and (2) are satisfied
above. Also, we can assume that pf (pe − 1)M − D is ample. Therefore, the
map

OX → F e+f
∗ OX(pf (pe − 1)∆ +D + E)

splits since pf (pe−1)∆ ≤ d(pe+f −1)∆e. Tensoring (on the smooth locus, and
extending as usual) with OX(−L) and taking cohomology, we have a splitting
of the map

H i(X,OX(−L))→ H i(X,F e+f
∗ OX(−pe+fL+ pf (pe − 1)∆ +D + E)).

In particular, this map on cohomology is injective for all sufficiently large and
divisible e.

However,

−pe+fL+ pf (pe − 1)∆ +D + E =

−(pe+f − pf )L− pfL+ pf (pe − 1)∆ +D + E ∼
(−pf (pe − 1)M − pf (pe − 1)∆) + pf (pe − 1)∆ +D +

(
E − pfL

)
∼

−pf (pe − 1)M +D

which is anti-ample. Therefore, H i(X,OX(−pe+fL+pf (pe−1)∆+D+E)) van-
ishes for i < dimX since X is globally F -regular, by [Smi00a, Corollary 4.4],
see also [BK05]. Because of the injection above, it follows that H i(X,OX(−L))
vanishes, and the proof is complete. �

25. Criteria for F-splitting of varieties

In the past, we’ve see Fedder’s criteria for Frobenius splitting of algebraic
varieties. Now, suppose that X is a variety over an algebraically closed field
of characteristic p > 0. We will discuss the Mehta-Ramanathan criterion of
Frobenius splitting, which is very useful in practice.

We’ve recently discussed using Cartier-operator as a way to construct explic-
itly the dual of Frobenius, F∗ωX → ωX . Recall this was constructed as follows:
we have the isomorphism C−1 : Ωi

X(logE) ∼= Hi (F∗(Ω
q
X(logE)). Take E = 0

and i = d = dimX, this give us ωX ∼= Hd (F∗Ω
q
X). But for i > d, the terms

F∗Ω
i
X of the complex F∗Ω

q
X are zero, and so we have a surjection F∗ωX → ωX .

This can be identified with the canonical dual of Frobenius.

Lemma 25.1. [BK05, Lemma 1.3.6] Suppose that x ∈ X is a smooth point
of an n-dimensional variety X over an algebraically closed field k. Then the
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map T : F∗ωX → ωX is described by the following formula. For any set of
generators t1, . . . , tn of the maximal ideal of OX,x

T (fdt1 ∧ · · · ∧ dtn) = S(f)dt1 ∧ · · · ∧ dtn
where S is defined on k[[t1, . . . , tn]] ⊇ OX,x as the map which sends the mono-

mial tp−1
1 . . . tp−1

n to 1 and the other monomials to zero.

This proof is taken from [BK05]. Certainly dt1 ∧ . . . dtn generates ωX as an
OX-module as well, which identifies ωX,x withOX,x. The completion of ωX/d(Ωd−1

X )
is thus identified with k[[x1, . . . , xn]]/J where J is the vector-space spanned by
all partial derivatives of h ∈ k[[x1, . . . , xn]. To see this, simply note that

d(hdt̂i) = ∂h∂tidt1 ∧ · · · ∧ dtn.

Thus, J is made up of all power series
∑
ait

i where p 6 |(ij + 1) for some
1 ≤ j ≤ n. In other words, k[[x1, . . . , xn]]/J is the set of power-series of the
form

∑
ajt

p−1+pj. But this is obviously identified with (k[[t1, . . . , tn]])p, and
unraveling our identifications yields the desired formula. �

Following Brion and Kumar, we also obtain the following:

Proposition 25.2. [BK05, Proposition 1.3.7] Let X be a nonsingular variety.
Then the following map η is an isomorphism. The map η

η : H omOX (ωX , F∗ωX)→H omOX (F∗OX ,OX)

is defined as follows: Working locally, fix a local generator ω for ωX,x. Fur-
thermore, for ψ ∈ H omOX,x(ωX,x, F∗ωX,x) and f ∈ OX,x, we define η(ψ)f to
be the ω coefficient of T (fψ(ω)).

This is well defined and furthermore, we obtain the following commutative
diagram

H omOX (ωX , F∗ωX)
η
//

T
��

H omOX (F∗OX ,OX)

eval at 1
��

H omOX (ωX , ωX)
κ

// H om(OX ,OX)

where κ is the natural isomorphism.

Proof. Fix g ∈ OX,x. Then notice that η(ψ · g) is defined by the rule

T (fψ(gω))/ω = T (fgpψ(ω))/ω = gT (fψ(ω))/ω

In particular, η is F∗OX-linear.
We now show that our local definition of η is well defined. Suppose that

ω′ = uω for some unit u ∈ OX,x. With this, we define a new map η′, where
η′(ψ)(f) = T (fψ(ω′))/ω′. So,

η′(ψ)(f) = T (fψ(ω′))/ω′ = T (fψ(uω))/ω′ = T (fupψ(ω))/ω′ = uT (fψ(ω))/(uω) = η(ψ)(f).
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Now we show that the diagram commutes. Given ψ ∈H omOX (ωX , F∗ωX),
the left-vertical arrow is defined by:

(T (ψ))(fω) = T (ψ(fω)) = fT (ψ(ω)).

In particular, κ(T (ψ)) is the map obtained by multiplication by T (ψ(ω))/ω.
On the other hand, the composition of η with the right vertical arrow is just

η(ψ)(1) = T (ψ(ω))/ω.

Therefore, the diagram commutes as desired.
Finally, we show that η is an isomorphism. We work locally and fix a

minimal set of generators x1, . . . , xn for the maximal ideal of OX,x. Notice
that ψ ∈H omOX,x(ωX,x, F∗ωX,x), defined by the rule

ψ(fdt1 ∧ · · · ∧ dtn) = fpdt1 ∧ · · · ∧ dtn
This map clearly generates H omOX (ωX,x, F∗ωX,x) as an F∗OX,x-module. Now,
η(ψ)(f) = T (fψ(ω))/ω = T (fω) = S(f). In particular, since S generates
HomOX,x(F∗OX,x,OX,x), we see that η is surjective, and thus it is an isomor-
phism since both modules are rank-1 F∗OX-modules. �

Now, H omOX (ωX , F∗ωX) ∼= F∗H omOX (F ∗ωX , ωX) ∼= F∗ω
1−p
X . This yields

a canonical isomorphism:

α : H omOX (F∗OX ,OX) ∼= F∗ω
(1−p)
X

Theorem 25.3. [BK05, Theorem 1.3.8] [MR85] The evaluation-at-1 map
H omOX (F∗OX ,OX)→ OX is identified the map

σ : F∗ω
(1−p)
X → OX

defined locally by
σ(f(dt1 ∧ . . . dtn)1−p) = S(f).

Therefore, φ ∈ H omOX (F∗OX ,OX) splits the Frobenius map if and only if
σ(α(φ)) = 1.

Proof. The diagram in the previous proposition proves exactly the first claim,
and the second follows immediately. �

Corollary 25.4. For a smooth X, given φ ∈ H omOX (F∗OX ,OX), if φ is a
splitting, then the tp−1ω coefficient of α(φ) is equal to 1 for every point x ∈ X.
For a general normal complete X, φ ∈ H omOX (F∗OX ,OX) is a splitting if
and only if the tp−1ω coefficient of α(φ) is equal to 1 for some point x ∈ X

Proof. The tp−1(dt1 ∧ . . . dtn)1−p-coefficient of α(φ) is the constant term of
φ(1) in OX,x ⊆ k[[t1, . . . , tn]]. Thus if φ(1) = 1, this is just 1. For the
complete case, we know that φ(1) is an element of k = H0(X,OX), and so the
tp−1(dt1 ∧ . . . dtn)1−p-coefficient of α(φ) is the only term that matters. �

We now come to the main result of this section. An effective tool for deter-
mining if a given φ ∈H omOX (F∗OX ,OX) ∼= F∗ω

(1−p)
X is a splitting.
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Theorem 25.5. [BK05], [MR85] Suppose that X is a normal complete variety

of dimension n. If there exists a s ∈ H0(X,ω
(−1)
X ) with associated divisor

D = Y1 + . . . Yn + Z

where Y1, . . . , Yn are prime divisors which intersect with SNC at a smooth
closed point x ∈ X and Z is an effective divisor not containing x, then X is

Frobenius split by a splitting corresponding to sp−1 ∈ H0(X,ω
(1−p)
X ) up to a

unit.
More generally, if s ∈ H0(X,ω

(1−p)
X ) is such that the divisor of s is (p −

1)(Y1 + · · · + Yn) + Z where the Y1 are SNC at a closed point x ∈ X and Z
does not contain X, then the same result holds.

Proof. At x ∈ X, suppose that each Yi is given by the vanishing of some
ti ∈ OX,x. Then the power series expansion of sp−1 is simply tp−1

1 . . . tp−1
n g(dt1∧

· · · ∧ dtn)1−p where g is a formal power series not vanishing at the origin. In
particular, the section φ ∈ HomOX (F∗OX ,OX) corresponding to sp−1 sends 1
to a non-zero constant in k. Multiplying by the inverse of that constant gives
us our desired result. �

Remark 25.6. It should be noted that the φ constructed above is compatible

with all the Yi’s and Z, since the ∆φ is exactly Y1 + · · ·+ Yn +Z = (p−1)
(p−1)

(Y1 +

· · ·+ Yn + Z).

Corollary 25.7. Suppose that X is a complete n-dimensional variety in char-
acteristic zero and ∆ is a Q-divisor in characteristic zero such that ∆ =
Y1 + . . . Yn + Z where the Yi are prime divisors which intersect with SNC at
a smooth closed point x ∈ X and Z is an effective divisor not containing x.
Further suppose that KX + ∆ ∼Q 0, then (X,∆) is log canonical.

Proof. Reduce to characteristic p� 0, then (Xp,∆p) is F -split and thus locally
F -pure. This implies that (X,∆) is log canonical. �

26. Diagonal splitting

Definition 26.1. [RR85] Suppose that X is a variety. We say that X is
diagonally split if the diagonal D is compatibly Frobenius split in X × X.
Given an ample divisor on X, we say that X is diagonally split along an ample
effective divisor A if there exists a Frobenius splitting φ : F∗OX×X → OX×X
that compatibly splits D and also factors through F∗OX×X(p∗2A).

Proposition 26.2. Suppose that X is a complete variety and suppose that L
and M are line bundles on X. Consider the natural map

m(L ,M ) : Γ(X,L )⊗ Γ(X,M )→ Γ(X,L ⊗M ).

If either

(1) L and M are ample and X is diagonally Frobenius split, or
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(2) L and M are semi-ample (or simple nef?) and X is diagonally Frobe-
nius split along an ample effective Cartier divisor A,

then m(L ,M ) is surjective.

Proof. We begin by recasting m(L ,M ) as a different map. Now, Γ(X,L )⊗
Γ(X,M ) ∼= Γ(X ×X, p∗1L ⊗ p∗2M ), and furthermore, if i : D ⊆ X ×X is the
inclusion map, then i∗(p∗1L ⊗ p∗2M ) = L ⊗M . Therefore, it is sufficient to
show that the restriction map

Γ(X ×X, p∗1L ⊗ p∗2M )→ Γ(D, (p∗1L ⊗ p∗2M )|D)

is surjective. In the first case, p∗1L ⊗ p∗2M is ample. Consider the following
commutative diagram where φ is just the Frobenius splitting twisted by a line
bundle:

H0(X ×X,OX×X((p∗1L ⊗ p∗2M )p
e
))

φ
//

γ

��

H0(X ×X,OX×X(p∗1L ⊗ p∗2M ))

δ
��

H0(D,OD((p∗1L ⊗ p∗2M )p
e
))

φ̄
// H0(D,OD(p∗1L ⊗ p∗2M ))

By Serre vanishing, γ is surjective and φ̄ is also surjective because it is induced
from a splitting. Thus δ is surjective as well and (1) is proven.

By composing Frobenius splittings along an both p∗1A and p∗2A, we obtain
a Frobenius splitting along an ample divisor B = p∗1A

n ⊗ p∗2Am on X ×X for
some integers n,m > 0. Consider the restriction map

H0(X ×X,OX×X((p∗1L
r ⊗ p∗2M r)(B)))→ H0(D,OD((p∗1L

r ⊗ p∗2M r)(B)))

for various integers r. The above argument shows that this map is surjective.
Composing with the Frobenius splitting along B gives us a diagram

H0(X ×X,F e
∗OX×X((p∗1L

r ⊗ p∗2M r)(B))) //

��

H0(D,F e
∗OD((p∗1L

r ⊗ p∗2M r)(B)))

��

H0(X ×X,OX×X((p∗1L
r ⊗ p∗2M r))) // H0(D,F e

∗OD((p∗1L
r ⊗ p∗2M r)))

As before, the bottom row is surjective which completes the proof. �

Corollary 26.3. Suppose that X is a diagonally Frobenius split projective
variety, then every ample divisor is very ample and induces a projectively nor-
mal embedding. Furthermore, if it is diagonally Frobenius split along an ample
divisor, then the algebra of sections of a semi-ample divisor is generated in
degree 1. Furthermore, every semi-ample divisor is globally generated.

Corollary 26.4. Suppose in addition that X is Cohen-Macaulay and diago-
nally Frobenius split along an ample divisor, then X is arithmetically Cohen-
Macaulay with respect to any ample line bundle.
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Proof. Choose A an ample effective divisor, this divisor is very ample and
induces a projectively normal embedding by assumption. Thus we only have
to show that H i(X,OX(vA)) = 0 for 1 ≤ i ≤ dim(X) − 1 and all v ∈ Z.
But since A is ample, these vanishings hold via the usual Frobenius splitting
arguments for v 6= 0. Consider v = 0, suppose that M is an ample divisor
along which X is Frobenius split. We have

OX → F e
∗OX → F e

∗OX(M)

splits and thus OX → F neOX(mM) where we can make m � 0. But then
H i(X,OX)→ H i(X,F e

∗OX(mM)) splits, and the right side vanishes for m�
0. �

Remark 26.5. Various generalizations can be made to splittings of X × X ×
· · · × X. Furthermore, these can be used to prove that various section rings
R(X,L ) are Koszul.

27. Toric varieties

In this section we briefly discuss Frobenius splittings on toric varieties.
There are numerous good introductions to toric varieties available, the canon-
ical reference is probably still [Ful93] although also see [CLS].

Consider the torus T ' (Gm)n = (A1 \ {0})n where k = k.

Definition 27.1. A toric variety is a normal variety X containing T as an
open subset such that the natural action of T on itself by multiplication extends
to an action on X.

Lemma 27.2. A toric variety can be covered by Torus invariant affine open
subsets. Each one of them is Spec k[xλ1 , . . . ,xλm ] for some monomials xλi.

Proof. We leave the first statement to the reader, as it is contained in any
introductory text on toric varieties. For the second statement, notice that if
U = SpecR is a torus invariant open affine subset, then if any polynomial
f =

∑
aix

i is in U , by using the torus action, it is clear that each monomial
appearing in f is in R. The claimed statement follows. �

Now, the torus T = Spec k[x±1
1 , . . . , x±1

n ] has a very natural Frobenius split-
ting Φc : F∗OT → OT , namely the one defined as follows:

Φc(x
λ) =

{
xλ/p if each entry in λ is divisible by p.

0 otherwise.

This is called the canonical Frobenius splitting (also see [BK05, Section 4]).

Proposition 27.3. If X is a toric variety, then Φc induces a Frobenius split-
ting Φc : F∗OX → OX .

Proof. We can work on an open affine set U = SpecR = Spec k[xλ1 , . . . ,xλm ].
Since R is normal, if xλ ∈ R, then if λ/p ∈ Zn, we clearly see that xλ/p ∈ R
as well. Since Φc(1) = 1, we have explicitly seen our Frobenius splitting. �
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Definition 27.4. If X is a toric variety and Z ⊆ X an irreducible subvariety,
then we say that Z is a torus invariant subvariety if it is invariant under the
torus action.

Example 27.5. In the toric variety A2, the torus invariant subvarieties are
the two coordinate axes and also the origin.

Lemma 27.6. Suppose that X is a toric variety, then Z ⊆ X is a torus
invariant subvariety if and only if Z is Φc compatible.

Proof. We can assume that X = Spec k[xλ1 , . . . ,xλm ]. A torus invariant sub-
variety thus corresponds to a prime ideal generated by monomials, and it is
clear that any such ideal is Φc-compatible. Thus we suppose that Q is a
Φc compatible ideal (note that Φc is surjective, so Q is automatically radical
and Φc(F∗Q) = Q). Further suppose that Q is prime. We will show that Q
generated by monomials.

Suppose that
∑
aix

λi = g ∈ Q. We simply need to show that each xλi ∈ Q.
Consider h = Φe

c(x
(pe−1)λig). Clearly this polynomial contains xλi as an entry.

Now, consider Φe
c(x

(pe−1)λixλj) = x((pe−1)λi+λj)/p
e
. But

((pe − 1)λi + λj) /p
e = λi +

λj − λi
pe

.

This is not in Zn for e� 0 if j 6= i. Therefore, for e� 0, Φe
c(x

(pe−1)λig) = xλi

which proves that Q is generated by monomials. �

We now briefly review the theory of canonical divisors on toric varieties.

Lemma 27.7. The anti-canonical divisor −KX in a toric variety X is equal
to the sum of all the torus invariant divisors. It can also be identified with
X \ T .

Proof. See for example, [Ful93]. �

Proposition 27.8. The Frobenius splitting Φc above has associated divisor
−KX .

Proof. Clearly the divisor ∆Φc ≥ −KX (since every torus invariant divisor is
Φc-compatible). Therefore, we only have to observe that Supp(∆Φc) is torus
invariant.

However, on the torus T , Φc generates HomOT (F∗OT ,OT ) as an OT -module.
�

Proposition 27.9. Projective toric varieties in characteristic zero are log
Fano and in characteristic p > 0 are globally F -regular.

Proof. Suppose that X is a projective toric variety in characteristic zero. Sup-
pose that A is an ample effective torus invariant divisor (it is a general fact that
Supp(A) = Supp(−KX). Choose rational ε > 0 such that ∆ := −KX−εA > 0.

Choose a toric log resolution π : X̃ → X of (X,∆), we know that

KX̃ − π
∗(KX + ∆) = KX̃ − π

∗(KX −KX − εA) = KX̃ + επ∗A.
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It is clear that Supp(π∗A) = Supp(−KX̃), thus all the coefficients of KX̃+επ∗A
are strictly bigger than −1 (which are the coefficients of KX̃).

Now suppose that X is a projective toric variety in characteristic p > 0.
Again choose A an ample effective torus invariant divisor. The section ring
S(A) is always a monomial algebra, and therefore it is always strongly F -
regular (since it is a summand of k[x1, . . . , xn]). The fact that the section
ring is strongly F -regular is then easily seen to imply that X is globally F -
regular. �

An important open question in the study of toric varieties is the following
(which I have seen attributed to Oda):

Question 27.10. Suppose that X is a smooth toric variety and L is an ample
line bundle. Then does L induce a projectively normal embedding into some
projective space? It is known that L is always very ample.

Several years ago, it was hoped that the Frobenius splitting methods in-
cluding Frobenius splitting along diagonals, would be enough to prove this
result. The most immediate problem is that the diagonal in X × X is not
torus invariant, and therefore it is NOT compatibly Frobenius split by Φc

(this caused some confusion in the past). However Sam Payne has analyzed
exactly when there exists a Frobenius splitting of X × X which compatibly
splits the diagonal (it’s just not the toric one).

If ∆ is a fan in a lattice N and M is the dual lattice, Payne defined

FX := {u ∈M |−1 ≤ 〈u, vρ〉 ≤ 1 where vρ is a primitive generator of a ray in ∆.}

Theorem 27.11. [Pay09] A toric variety X = X(∆) is diagonally Frobenius
split if and only if the interior of FX contains the interior of every equivalence
class of (1

p
M)/M .

28. Kodaira-type vanishing in characteristic p > 0

First we recall Kodaira’s vanishing theorem.

Theorem 28.1. [Kod53] Suppose that X is a smooth projective variety of
dimension n, characteristic zero, and H is an ample divisor on V , then

H i(X,OX(−H)) = 0

for i = 0, 1, . . . , n− 1. Dually, H i(X,ωX(H)) = 0 for i > 0 (this dual version
is equivalent as long as the variety is Cohen-Macaulay, which holds for example
for normal surfaces).

This was known previously for surfaces, [Zar95]. It fails in characteristic
zero for arbitrarily singular varieties (although it holds for normal surfaces),
see for example [AJ89].

This result is also false in characteristic p > 0. We begin with Mumford’s
example (which is singular).
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Example 28.2. [Mum67, Example 6] Suppose that X0 is a normal surface in
characteristic p > 0 with an element α ∈ H1(X0,OX0) such that F (α) = 0
(for example, X = E × P1 where E is a supersingular elliptic curve).

Suppose that H0 is an irreducible hyperplane section of X0 and let L0 =
OX0(H0). Choose a open covering Ui of X0 that principalizes H0 and represent
α as {αij} in Čech cohomology and choose gi ∈ Γ(Ui,OX0) so that αpij = gi−gj.
Suppose that H0|Ui = V (hi) for some hi ∈ Γ(Ui,OX0). Define an extension L
of K(X) by adjoining all roots of the equations:

zpi − h
p
i zi = gi

Note that then gi − zpi = −hpi zi. Define π : X → X0 to be the normalization
of X0 inside L, and set H = π∗H0 (note, H is ample since π is finite).

Claim 12. π∗α is contained in the subspace H1(X,OX(−H)) ⊆ H1(X,OX)
(note that H0(X,OX) surjects onto H0(H,OH)).

Proof. We set Vi := π−1(Ui). Now, zi ∈ Γ(Vi,OX) since zi satisfies a monic
equation with coefficients in H0(X0,OX0). This implies that

π∗α = [αij]

= [αij − zi + zj]

so that (
αij − zi + zj

hi

)p
=

αpij − z
p
i + zpj

hpi

=
(gi − gj)− zpi + zpj

hpi

=
(gi − zpi )− (gj − zpj )

hpi
= −zi + (hj/hi)

pzj

∈ Γ(Vi ∩ Vj,OX)

But this implies that
[
αij−zi+zj

hi

]
∈ Γ(Vi ∩ Vj,OX) which itself implies that

α = [αij − zi − zj] ∈ Γ(Vi ∩ Vj,OX(H)) and the claim follows. �

The result then follows by the following lemma.

Lemma 28.3. [Mum67, Lemma 5] Let π : X ′ → X be a finite surjective
morphism of normal varieties over k = k such that K(X) ⊆ K(X ′) is sep-
arable. Suppose that α ∈ H1(X,OX) is such that F (α) = 0 and 0 = π∗α ∈
H(X ′,OX′). Then α = 0.

Proof. As before, represent α as {αij} in Čech cohomology for some cover Ui of
X. Again we have αpij = gi−gj with gi ∈ Γ(Ui,OX0). Because π∗(α) = 0 there

exists functions hi ∈ Γ(π−1(Ui),OX′) such that π∗(αij) = hi − hj. Therefore,

hpi − π∗(gi) = hpj − π∗(gj).
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Thus there exists a β ∈ Γ(X ′,OX′) such that f ∗(gi) = hpi + β for all i. This
implies that π∗(gi) ∈ K(X ′)p, which implies that gi ∈ K(X)p for all i since
K(X) ⊆ K(X ′) is separable. Write gi = fpi , fi ∈ K(X), and then since X is
normal, we have that fi ∈ Γ(Ui,OX). Then, aij = fi − fj since apij = gi − gj.
This implies α = 0 as desired. �

Remark 28.4. While there is no guarantee that X is smooth,

We now discuss Kawamata-Viehweg vanishing in positive characteristic.

Theorem 28.5. [Kaw82], [Vie82] Suppose that X is a normal projective al-
gebraic variety over an algebraically closed field of characteristic zero, B an
effective Q-divisor on X and D a Cartier (or Q-Cartier integral) divisor. As-
sume that (X,B) is Kawamata log terminal and that H = D − (KX + B) is
ample. Then H i(X,D) = 0 holds for an i > 0.

We will show that many varieties fail this, at least if they are constructed
out of bizarre curves, we follow [Xie07].

Definition 28.6. [Tan72] Suppose that C is a smooth curve and f ∈ K(C).
Define

n(f) = degb1
p
D(df)c.

Here D(df) is the divisor associated to df ∈ ωC . The Tango invariant of C is
defined to be

n(C) = max{n(f)|f ∈ K(C), f /∈ (K(C))p}.
A curve C is called a Tango curve if n(C) > 0.

Before continuing, I’d like to discuss why Hiroshi Tango considered this
notion, we will not include the proof at this time.

Theorem 28.7. [Tan72] Let C be a curve of genus g > 0 with Tango invariant
n(C), then:

(i) For any line bundle L such that degL > n(C), the Frobenius map
H1(C,L −1) → H1(C,F ∗L −1) is injective (dually, H0(C, (F∗ωC) ⊗
L p)→ H0(C, ωC ⊗L ) is surjective).

(ii) If n(X) > 0, then there exists a line bundle M of degree n(C) such that
the Frobenius map H1(X,M−1)→ H1(X,F ∗M−1) is not injective.

Remark 28.8. The Tango invariant of P1 is −1.

Example 28.9. [Tan72] The following curve x3y + y3z + z3x = 0 in P2 is a
genus 3 smooth Tango curve in characteristic 3. The partial derivatives are
z3, x3, y3 and so it is indeed smooth. Choose f = (x − y)/z ∈ K(C). At the
point (0, 0, 1), we see that f vanishes to order 1, and so f is not in K(C)3.
One can show that

D(df) = −3(0, 0, 1)−3(1, 0, 0)+
∑

αα3=α+1

λ(1−α,−1, 1)+ other positive terms.
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where λ ≥ 3. n(f) ≥ 1.

Assuming f /∈ (K(C))p, df 6= 0 so that D(df) ∼ KC and has degree 2g − 2
where g = g(C) is the genus of C. Also notice that n(C) ≤ b(2g− 2)/pc, thus
n(C) > 0 implies that g > 1. There are many examples of Tango curves.

We have the following two short exactly sequences (just like we explored in
the proof of Hara’s lemma):

0→ OC → F∗OC → B1 → 0

0→ B1 → F∗ΩC → ΩC → 0

Here B1 is the image of d : F∗OC → F∗ΩC .

Lemma 28.10. [Xie07] With notation as above let L be a divisor on C, then
H0(C,B1(−L)) = {df |f ∈ K(C), D(df) ≥ pL}. Furthermore, n(C) > 0 if and
only if there exists an ample divisor L on C such that H0(C,B1(−L)) 6= 0.

Proof. Twisting the second equation above by −L we get

0→ B1(−L)→ F∗(ΩC(−pL))→ ΩC(−L)→ 0.

Now, H0(C,ΩC(−pL)) = {ω ∈ ΩC |D(ω) ≥ pL}, so that

H0(C,B1(−L)) = {df |f ∈ K(C), D(df) ≥ pL}.
For the second statement, assume that n(C) > 0, thus there exists an f0 ∈

K(C) such that n(f0) = degbD(df0)/pc > 0. Let L = bD(df0)/pc. Certainly
degL > 0 and D(df0) ≥ pL and so df0 ∈ H0(C,B1(−L)) 6= 0 as desired. The
converse direction merely reverses this. �

Using Tango curves, Raynaud constructed a smooth counterexample to Ko-
daira vanishing in each characteristic. These ideas have recently been further
explored by Xie, and we have the following theorem.

Theorem 28.11. [Xie07] Suppose that C is a tango curve, then there exists
a P1-bundle f : X → C an effective Q-divisor B and an integral divisor D on
X such that (X,B) is KLT (in fact, B has SNC support with coefficients < 1)
and H = D − (KX +B) is ample but H1(X,D) = 0.

Proof. This is taken from [Xie07]. We choose a divisor L on C such that
degL > 0 and H0(C,B1(−L)) 6= 0. Set L = OC(L), we then obtain

0→ H0(C,B1(−L))→ H1(C,L −1)→ H1(C,L −p).

Choose α ∈ H0(C,B1(−L)) with image α ∈ H1(C,L −1) ∼= Ext1
C(L ,OC).

Thus we obtain an extension

0→ OC → E → L → 0.

Apply F ∗ and obtain

0→ OC → F ∗E → L p → 0

which corresponds to the extension class of F ∗α, but this class is zero...
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Let f : X = P(E )→ C be the P1 bundle over C, with associated OX(1) and
fiber G. The surjection E → L → 0 induces a section σ : C → X by [Har77,
IV, Prop 2.6] with image E. Furthermore, f ∗OC = OX ∼= OX(1) ⊗ OX(−E)
so that OX(E) = OX(1). We use the fact the sequence above is split and then
and obtain:

0→ OC → (F ∗E )⊗L −p → L −p → 0.

Thus we have the composition

H0(C,OC)→ H0(C, (F ∗E )⊗L −p)→ H0(C, Sp(E )⊗L −p) ∼= H0(X,OX(p)⊗f ∗L −p).

Thus we have a section t ∈ H0(X,OX(p)⊗f ∗L −p) (corresponding to the image
of 1). Therefore, we have a curve C ′ on X with OX(C ′) ∼= OX(p)⊗ f ∗L −p.

Claim 13. We claim that C ′ is smooth and also that C ′ ∩ E = ∅.

Proof. We won’t work out the details, but only sketch some evidence. Cer-
tainly C ′.E = (pE − p(degL)G).E = pE2 − p(degL) where E2 is the degree
of E which is clearly degL. Thus as long as C ′ is irreducible, the second claim
is obvious.

In fact, E and C ′ both correspond to splittings onto distinct terms of the
split exact sequence

0→ OC → F ∗E → L p → 0.

compare with [Har77, Chapter V, Exercise 2.2]. �

Choose c a rational number satisfying 1/p < c < 1 such that cp /∈ Z. Set
q = bcpc − 1, and note that q ≥ 0. Set B = cC ′ and D = qE + f ∗(KC − qL).
Then

H = D − (KX +B)

≡ (bcpc − 1)E + f ∗(KC − qL)−KX − cC ′

≡ (bcpc − 1)E + f ∗(KC − (bcpc − 1)L)− (−2E + f ∗KC − f ∗L)− c(pE − pf ∗ L)

≡ (bcpc+ 1− cp)E + (cp− bcpc)f ∗L.

In particular, E is relatively ample and thus H is also ample. Clearly (X,B)
is KLT.

Now, we need to show that H1(X,D) 6= 0. Now, D.G ≥ 0, thus by [Har77,
Lemma 2.4], R1f∗OX(D) = 0 and f∗OX(D) is locally free. Then

H1(X,D)

= H1(C, f∗OX(D))

= H0(C, (f∗OX(D))∨ ⊗ ωC)∨

= H0(C, (f∗OX(D − f ∗KC))∨)∨

= H0(C,OC(qE − qL)∨)∨

= H0(C, (Sq(E )∨ ⊗L q))∨.
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Now L q is a quotient of Sq(E ), so L −q is a subsheaf of Sq(E )∨. Thus,

H1(X,D)∨ = H0(C, Sq(E )∨ ⊗L q) ⊇ H0(C,L −q ⊗L q) = H0(C,OC) = k

proving the theorem. �

Q. Xie also proves the following result:

Theorem 28.12. [Xie07] If there is a counter-example to the Kawamata-
Viehweg vanishing theorem on a ruled surface f : X → C, then either C is a
Tango curve or all sections are ample.

He also conjectures the following:

Conjecture 28.13. If there is a counter-example to the Kawamata-Viehweg
vanishing theorem on a normal projective surface X, then there exists a dom-
inant rational map f from X to a smooth projective Tango curve C.

29. Fujita’s conjecture

We begin with a discussion of Castlenuovo-regularity, see [Laz04, Section
1.8].

Definition 29.1. Let F be a coherent sheaf on a projective variety X with
a given ample line bundle A = OX(A) which is generated by global sections.
A coherent sheaf F on X is called m-regular with respect to A if

H i(X,F ⊗A ⊗(m−i)) = 0

for i > 0.

Theorem 29.2 (Mumford). [Laz04, Theorem 1.8.5] With notation as above,
suppose that F is an m-regular sheaf. Then F ⊗A m is globally generated.

Example 29.3. [Laz04, Example 1.8.23]. Suppose that X is a smooth (or log
canonical) n-dimensional variety of characteristic zero and A = OX(A) is an
ample line bundle on X.

Now, for each k ≥ set Fk = ωX . Clearly,

H i(X,Fk ⊗ A⊗(n+k−i)) = 0

by Kodaira vanishing for any k ≥ 0 and any i > 0. Thus ωX is n + k-regular
for all k ≥ 1.

Applying the theorem above implies that OX(KX + (n + k)A) is globally
generated for any k ≥ 1.

Conjecture 29.4 (Fujita). [Fuj87] Suppose that A is an ample line bundle
on a smooth n-dimensional variety X. Then:

(i) ωX ⊗A n+1+k is globally generated for k ≥ 0.
(ii) ωX ⊗A n+2+k is very ample for k ≥ 0.
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While we showed that (i) holds under the hypotheses that A is globally
generated, condition (ii) also holds under the same condition, see [Laz04].
There a numerous refinements of this theorem by many authors including
Angehrn, Demailly, Helmke, Kawamata, Kollár, Lazarsfeld, Seunghun Lee,
Matsushita, Siu, Tsuji, and many others and has spawned much research in
regards to Seshadri constants. It has been shown in characteristic zero in up
through dimension 4, notably in [Rei88], [EL93], [Kaw97].

In characteristic p > 0, much less is known.

Theorem 29.5. [Smi97b], cf [Har05] Suppose that X is a variety over k = k̄.
If X is only F -rational and A is globally generated then (i) holds in charac-
teristic p > 0.

The proof uses tight-closure methods, and we will prove it shortly.

Theorem 29.6. [Kee08] Suppose that X is a variety over k = k̄. If X is
smooth and A is globally generated, then (ii) holds in characteristic p > 0.

The proof uses Arapura’s theory of Frobenius amplitude, which can be
thought of as a means to measure positivity of line bundles and other sheaves
in positive characteristic.

We now turn to the proof of (i) in positive characteristic, we follow Hara’s
approach from [Har05]. First recall the following definition.

Definition 29.7. Given an ideal a in a ring R and an integer t > 0, the test
submodule τ(ωR, a

t) is defined to be the unique smallest submodule J ⊆ ωR
such that

Φe
R(F e

∗ a
dt(pe−1)eJ) ⊆ J

where ΦR : F∗ωR → R is the dual of Frobenius. It is also harmless to replace

adt(p
e−1)e by adt(pe−1)e in the previous equation.

Given an appropriate test element c ∈ R, we still have

τ(ω, at) =
∑
e≥0

Φe
R(F e

∗ ca
dtpeeωR)

Any difference between using integral closures or not (or tpe vs t(pe − 1) can
be absorbed into the c-term.

Lemma 29.8. [Har05, Proposition 2.4], [HT04] Assume that R is a N-graded
ring of dimension d ≥ 1 and further suppose that R has a graded system of
parameters in degree 1. Set m = R+. Then if l ≥ 0 is an integer, we have

τ(ωR,m
l+d−1) = mlτ(ωR,m

d−1).

Proof. The proof is essentially the same as a proof in [BSTZ10]. Choose a to
be the ideal generated by our given system of parameters noting that a = m (in
particular, it is generated by d-elements). We consider the dual of Frobenius,
ΦR : F∗ωR → ωR. We then note the following equality,

mpn(l+d−1) = ap
n(l+d−1) = ap

nlap
n(d−1) = (a[pn])lap

n(d−1).
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Then for some w > 0 and appropriate 0 6= c ∈ R we have:

τ(ωR, a
l+d−1) =

w∑
n=1

Φn
R(F n

∗ a
(l+d−1)pncωR), and

τ(ωR, a
l+d−1) =

w∑
n=1

Φn
R(F n

∗ a
(l+d−1)pncωR), and

τ(ωR; ad−1) =
w∑
n=1

Φn
R(F n

∗ a
(d−1)pnecωR).

However,

τ(ωR, a
l+d−1) =

w∑
n=1

Φn
R(F n

∗ a
(l+d−1)pncωR)

=
w∑
n=1

Φn
R(F n

∗ (a[pn])lap
n(d−1)cωR)

=
w∑
n=1

Φn
R(F n

∗ (al)
[pn]

ap
n(d−1)cωR)

= (al)
w∑
n=1

φn(F n
∗ a

pn(d−1)cωR)

= mlτ(ωR; ad−1)

as desired. �

Lemma 29.9. [Har05, Lemma 2.6] Suppose that R is a d-dimensional normal
graded ring over a perfect field k = R0 of characteristic p > 0 with m = R+

and also that R has a system of parameters of degree 1. Suppose further that
R is F -rational on the punctured spectrum. Then

τ(ω,ml) = [ωR]>l

for l� 0.

Proof. We will work in the Matlis dual world. The Matlis dual of ωR/τ(ω,ml)

is 0∗m
l

Hd
m(R)

and so we want to show that

0∗m
l

Hd
m(R) = Hd

m(R)≥−l

Recall that 0∗m
l

Hd
m(R)

is the set of elements z ∈ Hd
m(R) such that there exists

0 6= c ∈ R satisfying cmlpezp
e

= 0 ∈ Hd
m(R).

So we have two containments to show. First suppose that z ∈ Hd
m(R)≥−l.

Thus mlpezp
e ∈ Hd

m(R)≥0, but Hd
m(R)≥0 has finite length and so there is a

non-zero element of R which annihilates it, which implies z ∈ 0∗m
l

Hd
m(R)

.
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The reverse containment is somewhat more involved. First note that because
ωR/τ(ω,ml) has support at the maximal ideal, 0∗m

l

Hd
m(R)

has finite length. This

implies that the Frobenius map

F e : [Hd
m(R)]<−l → [Hd

m(R)]<−pel

is injective for l� 0.
Choose 0 6= z ∈ [Hd

m(R)]<−l. Therefore, lime→∞ deg(zp
e
) + lpe = −∞.

Claim 14. For e� 0, there exists a sequence of ce ∈ R such that lime→∞ deg(ce) =
∞ and such that ceRpelz

pe 6= 0.

Proof. The socle of Hd
m(R) is the set of elements of Hd

m(R) annihilated by m.
This is a module of finite length since its Matlis dual is ωR/(mωR). To see this,
given a set of generators yi of m, the socle is the kernel of Hd

m(R)→ ⊕yiHd
m(R).

Matlis duality gives the claim. Likewise the module of elements of Hd
m(R)

annihilated by R≥n is also finite length for any n.
Now, Rpelz

pe is non-zero for e � 0 because if it was zero, then Rpel−1z
pe

would be in the socle or zero. Inductively, this is ridiculous. Thus we can find
ce satisfying the desired properties. �

Using the fact that the degrees of ce are increasing, it then follows (by
arguments I won’t repeat here, see the citation for more descriptions, or
[Sch08a]) that ce is a “test element” for e � 0. We also know that e � 0,

cem
pelzp

e
= ceRpelz

pe 6= 0, which implies that z /∈ 0∗m
l

Hd
m(R)

. This completes the

proof. �

We need one more lemma.

Lemma 29.10 (Smith). With notation as above, ωX ⊗L ⊗m is globally gen-
erated if [ωR]l = Rl−m[ωR]m for all l� 0.

Proof. Suppose first the condition is satisfied, but that ωX ⊗ L ⊗m is not
globally generated. In particular, the global sections of ωX⊗L ⊗m all vanish on
some closed subvariety. But then Rl−m[ωR]m vanishes on that same subvariety
for l� 0. �

Now we turn to our main result of this section: Suppose that A is an ample
and globally generated line bundle on a smooth n-dimensional variety X. Then
ωX ⊗A n+1+k is globally generated for k ≥ 0.

Proof of Theorem 29.5. This is taken from [Har05, Theorem 2.1]. Set R =
R(X,A ) and set d = n+ 1 = dimX + 1 = dimR. As before, set m = R+ and

observe that ml = R≥l.
Now, we have the following inclusions for l� 0:

Rl−d[ωR]d−1 ⊆ [ωR]>l−1 = τ(ω,ml−1) = R≥l−dτ(ω,md−1) ⊆ R≥l−d[ωR]>d−1

This completes the proof. �
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Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116.
MR1017784 (91g:13010)

[HH92] M. Hochster and C. Huneke: Infinite integral extensions and big Cohen-
Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. 1147957

(92m:13023)

[HH94a] M. Hochster and C. Huneke: F -regularity, test elements, and smooth
base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1–62. MR1273534

(95d:13007)

[HH94b] M. Hochster and C. Huneke: Tight closure of parameter ideals and split-
ting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599–670.
MR1297848 (95k:13002)

[HH06] M. Hochster and C. Huneke: Tight closure in equal characteristic zero, A
preprint of a manuscript, 2006.

[HR74] M. Hochster and J. L. Roberts: Rings of invariants of reductive groups
acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974),
115–175. 0347810 (50 #311)

[HR76] M. Hochster and J. L. Roberts: The purity of the Frobenius and local
cohomology, Advances in Math. 21 (1976), no. 2, 117–172. MR0417172 (54

#5230)

[Hun96] C. Huneke: Tight closure and its applications, CBMS Regional Conference
Series in Mathematics, vol. 88, Published for the Conference Board of the
Mathematical Sciences, Washington, DC, 1996, With an appendix by Melvin
Hochster. MR1377268 (96m:13001)

[HL07] C. Huneke and G. Lyubeznik: Absolute integral closure in positive charac-
teristic, Adv. Math. 210 (2007), no. 2, 498–504. 2303230 (2008d:13005)

[HS06] C. Huneke and I. Swanson: Integral closure of ideals, rings, and modules,
London Mathematical Society Lecture Note Series, vol. 336, Cambridge Uni-
versity Press, Cambridge, 2006. MR2266432 (2008m:13013)

[HY02] C. Huneke and Y. Yao: Unmixed local rings with minimal Hilbert-Kunz
multiplicity are regular, Proc. Amer. Math. Soc. 130 (2002), no. 3, 661–665
(electronic). MR1866016 (2002h:13026)

[HS04] E. Hyry and K. E. Smith: Core versus graded core, and global sections
of line bundles, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3143–3166 (elec-
tronic). MR2052944 (2005g:13007)

[Kat70] N. M. Katz: Nilpotent connections and the monodromy theorem: Applications

of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), no. 39,
175–232. 0291177 (45 #271)

[Kaw82] Y. Kawamata: A generalization of Kodaira-Ramanujam’s vanishing theorem,
Math. Ann. 261 (1982), no. 1, 43–46. MR675204 (84i:14022)

[Kaw97] Y. Kawamata: On Fujita’s freeness conjecture for 3-folds and 4-folds, Math.
Ann. 308 (1997), no. 3, 491–505. MR1457742 (99c:14008)

[Kee08] D. S. Keeler: Fujita’s conjecture and Frobenius amplitude, Amer. J. Math.
130 (2008), no. 5, 1327–1336. 2450210 (2009i:14006)

[KKMSD73] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat: Toroidal
embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag,
Berlin, 1973. MR0335518 (49 #299)

[Kod53] K. Kodaira: On a differential-geometric method in the theory of analytic
stacks, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1268–1273. 0066693 (16,618b)



114 KARL SCHWEDE

[Kol07] J. Kollár: Lectures on resolution of singularities, Annals of Mathematics
Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. 2289519

(2008f:14026)
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