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1. F -rationality

Definition 1.1. Given (M,φ) as above, the module τ(M,φ) is called the test submodule of
(M,φ). With ΨR : F∗ωR → ωR, the module τ(ωR,ΨR) = τ(ωR) is called the simply the test
submodule. An element 0 6= d ∈ R is called a test element for (M,φ) if dM ⊆ N for every
nonzero submodule N of M satisfying φ(N) * N . It follows from the above proof that c ∈ R
is such that Rc is regular and Mc

∼= Rc, then c has some power which is a test element.

If R is a ring of characteristic p > 0 and π : X̃ → X = SpecR is a resolution of
singularities, then philosophically, τ(ωR) should be the submodule corresponding to π∗ωX̃
(this submodule is independent of the choice of resolution as pointed out in [GR70]). In
particular, the same argument we use to prove that F -rational singularities were pseudo-
rational, can be used to show that there is always a containment τ(ωR) ⊆ π∗ωX̃ , simply
consider the diagram:

π∗F∗ωX̃ = F∗π∗ωX̃� _

F∗α
��

π∗Ψ
X̃

// π∗ωX̃� _
α

��

F∗ωX ΨX

// ωX

We also have the following useful fact about τ(M,φ).

Lemma 1.2. With τ(M,φ) as above, φ(F e
∗ τ(M,φ)) = τ(M,φ).

Proof. Because φ is not zero, φ(F e
∗ τ(M,φ)) is non-zero. On the other hand, it is clearly

φ-stable thus φ(F e
∗ τ(M,φ)) ⊇ τ(M,φ) by the universal property of τ(M,φ). However,

φ(F e
∗ τ(M,φ)) ⊆ τ(M,φ) by definition. �

Corollary 1.3. [Vél95] Suppose that M is a generically rank-1 module, φ : F e
∗M → M is

R-linear and that τ(M,φ) = M . Then for any non-zero submodule N ⊆ M , there exists an
n > 0 such that

φn(F ne
∗ N) = M.

In particular, for every non-zero c ∈ R, there exists an n > 0 such that φn(F ne
∗ cN) = M .

Proof. Choose c ∈ R such that cM ⊆ N . We may thus assume that N = cM . We will show
that φn(F ne

∗ cM) ⊆ φn(F ne
∗ cM) which will complete the proof since we already know that∑

n>0 φ
n(F ne

∗ cM) = M . Now,

φn(F ne
∗ cM) = φn(F ne

∗ cφ(F e
∗M)) = φn(F ne

∗ F
e
∗ (c

peM)) = φn+1(F (n+1)e
∗ cp

e

M) ⊆ φn+1(F (n+1)e
∗ cM)

as desired. �
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Corollary 1.4. In an F -finite ring, the F -rational locus is open.

Remark 1.5. I only point this out because using the historically standard definitions, this is
much less obvious.

Remark 1.6. The condition of the corollary is sometimes called strong F -rationality.

We now try to show that F -rational singularities deform (even though we don’t expect
pseudo-rational singularities to deform, a problem which I believe is open in general).

Theorem 1.7. Suppose that R is a reduced local ring and f ∈ R is a regular element. If
R/f has F -rational singularities, then R also has F -rational singularities.

Proof. The fact that R/f is normal and Cohen-Macaulay immediately imply that R is normal
and Cohen-Macaulay. Therefore, we simply have to show that τ(ωR) = ωR. Choose c ∈ R
such that c is a test element for (ωR,ΨR), and also for (ωR/f ,ΨR/f ).

Consider the following diagram of short exact sequences (for every e > 0):

0 // R

17→cfpe−1

��

×f
// R

17→c
��

// R/f //

17→c̄
��

0

0 // F e
∗R

F e
∗×f

// F e
∗R // F e

∗ (R/f) // 0.

Apply the functor HomR( , ωR) and note that we obtain the following diagram of short
exact sequences.

C
η

// D // 0

0 // ωR

OO

×f
// ωR

OO

// ωR/f ∼= Ext1
R(R/f, ωR)

OO

// 0

0 // ⊕eF e
∗ωR

α

OO

F e
∗×f

// ⊕eF e
∗ωR

β

OO

// ⊕eF e
∗ωR/f

∼= ⊕e Ext1
R(F e

∗ (R/f), ωR)

δ

OO

// 0

where α is the dual map to the map R → F e
∗R that sends 1 to c, and β is the dual map to

the map which sends 1 to cfp
e−1. Sticking direct sums in from of the terms in the bottom

row guarantees that the image of α is τ(ωR) and that the image of δ is τR(ωR/f ) = ωR/f
by hypothesis. Of course, the image of β is contained in τR(ωR). Thus D has a natural
surjection onto C = ωR/τ(ωR). Furthermore, the composition C → D → C is as before,
multiplication by f and Nakayama’s lemma implies that C is zero again. �

Finally, let’s also compare some of the other basic properties of F -rational singularities
with those of rational singularities. In particular, we might ask if Boutot’s theorem still
holds?

Theorem 1.8. Suppose that i : R → S is a finite inclusion of normal local domains that
splits. Then if S is F -rational (respectively F -injective) then R is F -rational (respectively
F -injective).
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Proof. We first show that R is Cohen-Macaulay (note that in either case, S is Cohen-
Macaulay by hypothesis). Set κ : S → R to be the splitting of i. By dualizing the
composition κ ◦ i : R→ S → R, we obtain

RHomR(R,ω
q
R) oo RHomR(S, ω

q
R) oo RHomR(R,ω

q
R)

ω
q
R

oo ω
q
S

oo ω
q
R

Just as in the original Boutot’s theorem, we immediately obtain that R is Cohen-Macaulay
since the identity h− dimR+iω

q
R → h− dimR+iω

q
R factors through zero for i > 0.

For the F -injectivity, we have things pretty easy. We know that the natural map ωS → ωR
is surjective. But we also have the diagram:

ωR oooo ωS

F e
∗ωR

ΨR

OO

oooo F e
∗ωS

ΨS

OOOO

Since ΨS is surjective, ΨR is also surjective which implies that R is F -injective.
For F -rationality, the argument is very very similar. We write down essentially the same

diagram.
ωR oo ωS

⊕eF e
∗ωR

α

OO

oo ⊕eF e
∗ωS

β

OO

Now however, the maps α and β are ΨR and ΨS (respectively) pre-multiplied by some
element c ∈ R that is a test element for both ωR and ωS. As before, β is surjective which
implies that α is surjective. �

Remark 1.9. Without the condition that S is a finite extension of R, these results are false.
See [Wat97].

2. Reduction to Characteristic p

Our goal over the next couple weeks is to give a proof that F -rational singularities corre-
spond to rational singularities via reduction mod p. This is hard. We will break this up into
several steps.

• Introduce reduction to characteristic p� 0.
• Modulo a really hard technical lemma, prove the theorem.
• Prove the really hard technical lemma (we might put this off a little bit).

In this section we go over the necessary prerequisites to reduce a variety to characteristic
p. A good introductory reference to this theory is [HH06, 2.1]. Our primary goal is the
statements needed to work with rational singularities.

Let R be a finitely generated C algebra. We can write R = C[x1, . . . , xn]/I for some ideal I

and let S denote C[x1, . . . , xn]. Let X = SpecR and Y = SpecS. Let π : BlJ(Y ) = Ỹ → Y
be a strong (projective) log resolution of X in Y with reduced exceptional divisor E mapping
to X (induced by blowing up an ideal J). Note that we may also assume our schemes are
projective; that is, we can embed Y as an open set in some Pn, and thus take the projective
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closure X of X in Pn. We may even extend π (our embedded resolution) to π : P̃n → Pn, a
strong (projective) log resolution of X with reduced exceptional set E.

There exists a finitely generated Z algebra A ⊂ C (including all the coefficients of a set of
generators of I and those required by the blow-up of J), a finitely generated A algebra RA,

an ideal JA ⊂ RA, and schemes ỸA, XA and EA of finite type over A such that RA ⊗A C =
R, JAR = J , XA ×SpecA C = X, YA ×SpecA SpecC = Y , EA ×SpecA SpecC = E and
EA ×SpecA SpecC = E with EA effective and supported on the blow-up of JA. We may
localize A at a single element so that YA is smooth over A and EA is a simple normal
crossing divisor over A if desired. By further localizing A (at a single element), we may
assume any finite set of finitely generated RA modules is A-free, see for example [Hun96,
3.4] and [HR74] and we may assume that A itself is regular. We can also take any finite
collection of modules, for example Rif∗OX to this mixed characteristic setting, as well as
maps between these modules.

Theorem 2.1 (Generic Freeness). [HR74] Let A be a Noetherian domain and let R be a
finitely generated A-algebra. Let S be a finitely generated R-algebra and let E be a finitely
generated S-module. Let M be a finited generated R-submodule E and let N be a be a finitely
generated A-submodule. Let D = E/(M +N). Then there is a nonzero element a ∈ A such
that Da is a free Aa-module.

In our particular case, we may localize so that SA, RA, IA, JA, etc. are all locally free over
A, as well as the various cokernels of maps between these modules.

We will now form a family of positive characteristic models of X by looking at all the rings
Rt = RA⊗A k(t) where k(t) is the residue field of a maximal ideal t ∈ T = SpecA. Note that
k(t) is a finite, and thus perfect, field of characteristic p. In the case where we are reducing
a particular maximal (closed) point, tensoring with k(t) will either give us a unique closed
point in our characteristic p model (if we started over C as we assumed), or a possibly finite
set of closed points if we began by working over some other field of characteristic zero. If
we are working with a non-closed point, we will have a finite set of points of SpecRt pulling
back to xA. We may also tensor the various schemes YA, EA, etc. with k(t) to produce a
characteristic p model of an entire situation.

Example 2.2. If we let R = C[x, y, z]/(x2 + y2 + z2), then we would let A = Z, so that
SA = A[x, y, z], RA = SA/(x

2 + y2 + z2), XA = SpecRA, and YA = SpecSA. An obvious
resolution is just blowing up the point (x, y, z) so that is what we do in SA as well to get

πA : (ỸA = Proj(SA⊕ (x, y, z)t⊕ (x, y, z)2t2⊕ . . .))→ YA. In characteristic 2, this resolution
is not a resolution of singularities since XZ/2 isn’t even reduced! However, in all other
characteristics it is.

Various properties of rings that we are interested in descend well from characteristic zero.
For example, smoothness, normality, being reduced, and being Cohen-Macaulay all descend
well [Hun96, Appendix 1]. Specifically, Rt has one of the above properties above for an open
set of maximal ideals of A if and only if R(FracA) has the same property (in which case so
does R). Furthermore, a ring R of finite type over a field k is Cohen-Macaulay if and only
if for every field extension k ⊂ K, R ⊗k K is Cohen-Macaulay [BH93, 2.1.10]. Thus Rt is
Cohen-Macaulay for an infinite set of primes if and only if R is Cohen-Macaulay. Likewise,
it has already been shown that if Rt is seminormal for a Zariski dense set of primes, then R
is seminormal [HR76, 5.31].

4



Let us show that the Cohen-Macaulay condition descends to characteristic p > 0.

Example 2.3. Suppose thatR = S/I where S = C[x1, . . . , xn]. We know thatRHomS(R/I, S) ∼=
ω

q
R[− dimS]. We consider hi(RHomS(R, S)) for some i. We will show that this vanishes

in characteristic zero if and only if it vanishes in characteristic p � 0. Choose A to be a
finitely generated Z-algebra containing all the coefficients of a set of generators {fi}of I.
Let SA = A[x1, . . . , xn] and set IA to be the ideal in SA generated by those same {fi}. Set
RA = SA/IA. If necessary, we replace A by a localization such that all modules in sight are
A-free.

We claim first that hi(RHomS(R, S)) ∼= hi(RHomSA
(RA, SA))⊗AC. But this is easy, since

it is the same thing as hi(RHomSA
(RA, SA))⊗SA

S noticing that S is a flat SA-algebra (see for
example, [?, Theorem 7.11, Exercise 7.7]). Therefore, we have that hi(RHomS(R, S)) 6= 0 if
and only if hi(RHomSA

(RA, SA)) 6= 0 because the latter term is A-free.
We choose p to be a maximal ideal of A and we want to do the same thing base-changing

with k = A/p. In particular, we need to show that

hi(RHomSA
(RA, SA))⊗A k ∼= hi(RHomSk

(Rk, Sk)).

This is more complicated because k is not A-flat. Choose a free Sk-resolution P q of RA,
tensoring with Sk over SA turns it into a complex mapping to Rk. Alternately, tensoring
with k over A keeps it acyclic (since it would then correspond to Tor of the A-free module
RA). Thus, it is still a free-resolution of Rk. The statement then reduces to the question
of whether HomSA

( , SA)⊗ k is the same as HomSA
( ⊗A k, Sk) for A-free modules in the

blank. Choose M to fill in the blank, an A-free SA-module. Choose F → G→M → 0 to be
an exact sequence with F and G chosen as SA-free modules, by localizing further, we may
assume that H = Image(F ) ⊆ G is A-free. We have a natural map

γ(F ) : HomSA
(F, SA)⊗ k → HomSA

(F ⊗A k, Sk)
This can also be described as

HomSA
(F, SA)⊗SA

Sk → HomSA
(F ⊗SA

Sk, Sk)

But since = SnA, this is just Snk → Snk in an obvious isomorphism. Thus γ(F ) and γ(G) are
isomorphisms. Now, consider the following diagram (where all tensor products are over A)

Tor1
A(HomSA

(H,SA), k) = 0 // HomSA(M,SA)⊗ k // HomSA
(G,SA)⊗ k // HomSA(F, SA)⊗ k

HomSA
(Tor1

A(H, k), Sk) = 0
��

// HomSA
(M ⊗ k, Sk)

��

// HomSA
(G⊗ k, Sk)

��

∼

// HomSA
(F ⊗ k, Sk)

��

∼

Therefore, if you want to determine if a ring is Cohen-Macaulay, in some sense it is sufficient
to check it in characteristic p� 0.
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