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1. Criteria for local Frobenius splitting I (Fedder’s criteria)

Now we need some notation.

Definition 1.1. Suppose that S is a ring and I is an ideal. If ψ : F e
∗S → S is an S-linear

map, we say that I is φ-compatible if ψ(F e
∗ I) ⊆ I.

Remark 1.2. Clearly if I is ψ-compatible, then ψ induces a map on R/I.

Remark 1.3. Remember that for ideals I, J , the notation I : J is all the elements r ∈ R such
that rJ ⊆ I. In other words, it is the same as AnnR(J + I/I).

Theorem 1.4. [Fed83][Fedder’s Lemma] Suppose that S is a regular local ring and that
R = S/I. The set of φ ∈ HomS(F e

∗S, S) which satisfy φ(F e
∗ I) ⊆ I is equal to F e

∗ (I [pe] :
I)·HomS(F e

∗S, S) ∼= F e
∗ (I [pe] : I) and those which induce the zero map on R = S/I correspond

to I [pe]. In conclusion, HomR(F e
∗R,R) ∼= F e

∗ (I [pe] : I)/(I [pe]).

Proof. Let Φ ∈ HomS(F e
∗S, S) be a generating map. We will first show the following lemma.

Lemma 1.5. For any ideals I, J ⊆ S, we have Φ(F e
∗J) ⊆ I if and only if I [pe] ⊇ J .

Proof. The (⇐) direction is easier and we start with that. We claim that φ(F e
∗ I

[pe]) ⊆ I.

To see this, note that if I = (x1, . . . , xn), then I [pe] = (xpe

1 , . . . , x
pe

n ) and so if z ∈ I [pe], then

z =
∑
aix

pe

i . Then Φ(z) = Φ(
∑
aix

pe

i ) =
∑
xiφ(ai). The first direction then immediately

follows.
Conversely, suppose that Φ(F e

∗ I) ⊆ J . We choose y1, . . . , ym to be a basis for F e
∗S over S

(we can obviously project on to each factor via multiplication of Φ by elements of F e
∗S, and

any map φ : F e
∗S → S is a sum of such projections). So, we need F e

∗ I ⊆ ⊕J · yi = J ·F e
∗S =

F e
∗J

[pe]. In other words, I ⊆ J [pe] as desired. �

I claim that a map φ : F e
∗S → S sends F e

∗ I into I if and only if φ ∈ F e
∗ (I [pe] : I) · Φ. To

see this, write φ = z ·Φ for some z ∈ F e
∗S = S. Then φ(F e

∗ I) ⊆ I if and only if Φ(F e
∗ zI) ⊆ I

which happens if and only if zI ⊆ I [pe], in other words, if and only if z ∈ I [pe
: I. Thus

φ ∈ F e
∗ (I [pe] : I) · Φ if and only if φ(F e

∗ I) ⊆ I.
For the second statement, suppose that φ ∈ I [pe] · Φ. Thus for every x ∈ F e

∗S, φ(x) ∈ I
(use the previous lemma with J = I [pe] I = I). Thus the induced map on R = S/I is the
zero map. Conversely, suppose that φ ∈ F e

∗ (I [pe] : I) ·Φ but φ /∈ I [pe] ·Φ. Thus there is some
x ∈ F e

∗S such that φ(x) /∈ I and so the induced map on R = S/I is non-zero. �

Corollary 1.6 (Fedder’s criteria). If (S,m) is a F -finite regular local ring and R = S/I,
then R is F -split if and only if I [pe] : I is not contained in m[pe].
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Proof. For φ̄ ∈ HomR(F e
∗R,R) (induced from φ : F e

∗S → S) to be surjective, it must contain
1 in it’s image. This happens if and only if φ /∈ m[pe] · Φ (where Φ is in the previous proof).
Such a map exists if and only if I [pe] : I * m[pe]. �

Remark 1.7. If I = (f) is a principal ideal, then I [pe] : I = (fpe−1) which is very easy to
compute by hand. In many cases, the colon’s can be done via a computer.

We now do several examples.

Example 1.8. The following rings are F -split.

(1) R = k[x1, . . . , xn]/(x1 · · · · ·xn). Notice that (x1 · · · · ·xn)pe−1 * (xpe

1 , . . . , x
pe

n ) = m[pe].
(2) R = k[x, y, z]/(x2 − yz). Notice that (x2 − yz)pe−1 has a term (yz)pe−1 which does

not appear in m[pe].
(3) R = k[x, y, z]/(x2− y2z) if the characteristic of k is not 2. In this case, (x2− y2z)p−1

has a term
(

p−1
(p−1)/2

)
xpe−1ype−1z

pe−1
2 and so the question is whether p divides the

binomial coefficient. But it is clear that it does not.
(4) R = k[x, y, z]/(x3 + y3 + z3) if the characteristic of k is 7 (check it yourself). One can

also check that it is not F -split for characteristics 2, 3, 5 and more generally if p = 2
mod 3.

Fedder’s Lemma suggests the following question.

Question 1.9. Given an arbitrary ring T with quotient R = T/I. Is it true that every map
φ ∈ HomR(F e

∗R,R) is induced from a map φ ∈ HomT (F e
∗T, T )?

The answer to this question is no as the following example demonstrates:

Example 1.10. Consider S = k[x, y, z], T = k[x, y, z]/(x2 − yz) and R = k[x, y, z]/(x, y).
The map ΦR : F∗R→ R which sends zp−1 to 1 and the other zi to zero is induced by maps
written as ΦS(w · ) where ΦS is the F∗S-module generator of HomS(F∗S, S) discussed above
and w is an element of the coset (xy)p−1 + (xp, yp). We have to ask ourselves whether such
a w can be inside ((x2 − yz)p−1) + (xp, yp), and the answer is clearly no.

2. Very basic facts about Frobenius splitting

First we discuss the difference between F -purity and F -splitting.

Definition 2.1. A ring R of characteristic p > 0 is said to be F -pure if for every R-module
M , the map M ⊗R→M ⊗ F∗R is pure.

Clearly an F -split ring is F -pure. Furthermore, if R is F -finite, then an F -pure ring is
also F -split (see The notion of F -purity is much better behaved outside the F -finite context.
However, we won’t be going there.

In an F -finite scheme, F -purity is used interchangably with local F -splitting. An F -
splitting (without a “local” qualifier) is always viewed as a global statement.

Here we list (and prove) a number of basic facts about Frobenius splittings, again mostly
in the local context.

Theorem 2.2. Suppose that R is an F -finite ring. Then the following hold:

(a) If R is Frobenius split (F -split) then R is reduced.
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(b) If RQ is Frobenius split for some Q ∈ SpecR, then R is Frobenius split in a neigh-
borhood of Q.

(c) R is F -split if and only if Rm is F -split for every maximal ideal m if and only if RQ

is F -split for every prime ideal Q.
(d) If R ⊆ S is a split inclusion of rings and S is F -split, then R is also F -split.
(e) If R is F -split, then for every minimal prime q ⊆ R, R/q is also F -split.
(f) If φ : F e

∗R→ R is any R-linear map and I and J are φ-compatible ideals, then so is

I + J , I ∩ J ,
√
I, and also I : a for any ideal a.

3. (Weak/Semi)normality and Frobenius splitting

Today we’ll prove that a F -split ring is weakly normal and thus seminormal (so first I’ll
define these terms).

First we’ll talk about some hand-wavy geometry. Seminormality (and weak normality)
are ways of forcing all gluing of your scheme is as transverse as possible. So first what is
“gluing”?

Suppose that R is an F -finite reduced ring with normalization RN (domain of finite type
over a field is fine). The semi-normalization RSN (and weak normalization RWN of R is a
partial normalization of R inside RN). Since R is F -finite it is excellent, and so all these
extensions are finite extensions (ie, we don’t have to worry about extreme funny-ness).

Definition 3.1. [AB69], [GT80], [Swa80] A finite integral extension of reduced rings i : A ⊂
B is said to be subintegral (respectively weakly subintegral) if

(i) it induces a bijection on the prime spectra, and
(ii) for every prime P ∈ SpecB, the induced map on the residue fields, k(i−1(P ))→ k(P ),

is an isomorphism (respectively, is a purely inseparable extension of fields).

Remark 3.2. A subintegral extension of rings has also been called a quasi-isomorphism; see
for example [GT80].

Remark 3.3. Condition (ii) is unnecessary in the case of extensions of rings of finite type
over an algebraically closed field of characteristic zero.

Definition 3.4. [GT80, 1.2], [Swa80, 2.2] Let A ⊂ B be a finite extension of reduced
rings. Define +

BA to be the (unique) largest subextension of A in B such that A ⊂ +
BA is

subintegral. This is called the seminormalization of A inside B. A is said to be seminormal
in B if A = +

BA. If A is seminormal inside its normalization, then A is called seminormal.

Definition 3.5. [AB69], [Yan85], [RRS96, 1.1] Let A ⊂ B be a finite extension of reduced
rings. Define ∗

BA to be the (unique) largest subextension of A in B such that A ⊂ ∗
BA is

weakly subintegral. This is called the weak normalization of A inside B. A is said to be
weakly normal in B if A = ∗

BA. If A is weakly normal inside its normalization, then A is
called weakly normal.
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