F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 9/2-2010

KARL SCHWEDE

1. CRITERIA FOR LOCAL FROBENIUS SPLITTING I (FEDDER'S CRITERIA)

Now we need some notation.

Definition 1.1. Suppose that S is a ring and I is an ideal. If $\psi : F_*^e S \to S$ is an S-linear map, we say that I is ϕ -compatible if $\psi(F_*^e I) \subseteq I$.

Remark 1.2. Clearly if I is ψ -compatible, then ψ induces a map on R/I.

Remark 1.3. Remember that for ideals I, J, the notation I : J is all the elements $r \in R$ such that $rJ \subseteq I$. In other words, it is the same as $Ann_R(J + I/I)$.

Theorem 1.4. [Fed83]/Fedder's Lemma] Suppose that S is a regular local ring and that R = S/I. The set of $\phi \in \operatorname{Hom}_S(F^e_*S, S)$ which satisfy $\phi(F^e_*I) \subseteq I$ is equal to $F^e_*(I^{[p^e]} : I)$. Hom $_S(F^e_*S, S) \cong F^e_*(I^{[p^e]} : I)$ and those which induce the zero map on R = S/I correspond to $I^{[p^e]}$. In conclusion, $\operatorname{Hom}_R(F^e_*R, R) \cong F^e_*(I^{[p^e]} : I)/(I^{[p^e]})$.

Proof. Let $\Phi \in \operatorname{Hom}_{S}(F^{e}_{*}S, S)$ be a generating map. We will first show the following lemma.

Lemma 1.5. For any ideals $I, J \subseteq S$, we have $\Phi(F^e_*J) \subseteq I$ if and only if $I^{[p^e]} \supseteq J$.

Proof. The (\Leftarrow) direction is easier and we start with that. We claim that $\phi(F_*^e I^{[p^e]}) \subseteq I$. To see this, note that if $I = (x_1, \ldots, x_n)$, then $I^{[p^e]} = (x_1^{p^e}, \ldots, x_n^{p^e})$ and so if $z \in I^{[p^e]}$, then $z = \sum a_i x_i^{p^e}$. Then $\Phi(z) = \Phi(\sum a_i x_i^{p^e}) = \sum x_i \phi(a_i)$. The first direction then immediately follows.

Conversely, suppose that $\Phi(F_*^eI) \subseteq J$. We choose y_1, \ldots, y_m to be a basis for F_*^eS over S (we can obviously project on to each factor via multiplication of Φ by elements of F_*^eS , and any map $\phi: F_*^eS \to S$ is a sum of such projections). So, we need $F_*^eI \subseteq \oplus J \cdot y_i = J \cdot F_*^eS = F_*^eJ^{[p^e]}$. In other words, $I \subseteq J^{[p^e]}$ as desired.

I claim that a map $\phi: F_*^e S \to S$ sends $F_*^e I$ into I if and only if $\phi \in F_*^e(I^{[p^e]}: I) \cdot \Phi$. To see this, write $\phi = z \cdot \Phi$ for some $z \in F_*^e S = S$. Then $\phi(F_*^e I) \subseteq I$ if and only if $\Phi(F_*^e z I) \subseteq I$ which happens if and only if $zI \subseteq I^{[p^e]}$, in other words, if and only if $z \in I^{[p^e]}: I$. Thus $\phi \in F_*^e(I^{[p^e]}: I) \cdot \Phi$ if and only if $\phi(F_*^e I) \subseteq I$.

For the second statement, suppose that $\phi \in I^{[p^e]} \cdot \Phi$. Thus for every $x \in F_*^e S$, $\phi(x) \in I$ (use the previous lemma with $J = I^{[p^e]} I = I$). Thus the induced map on R = S/I is the zero map. Conversely, suppose that $\phi \in F_*^e(I^{[p^e]} : I) \cdot \Phi$ but $\phi \notin I^{[p^e]} \cdot \Phi$. Thus there is some $x \in F_*^e S$ such that $\phi(x) \notin I$ and so the induced map on R = S/I is non-zero. \Box

Corollary 1.6 (Fedder's criteria). If (S, \mathfrak{m}) is a *F*-finite regular local ring and R = S/I, then *R* is *F*-split if and only if $I^{[p^e]} : I$ is not contained in $\mathfrak{m}^{[p^e]}$.

Proof. For $\bar{\phi} \in \operatorname{Hom}_R(F^e_*R, R)$ (induced from $\phi: F^e_*S \to S$) to be surjective, it must contain 1 in it's image. This happens if and only if $\phi \notin \mathfrak{m}^{[p^e]} \cdot \Phi$ (where Φ is in the previous proof). Such a map exists if and only if $I^{[p^e]}: I \not\subset \mathfrak{m}^{[p^e]}$. \square

Remark 1.7. If I = (f) is a principal ideal, then $I^{[p^e]} : I = (f^{p^e-1})$ which is very easy to compute by hand. In many cases, the colon's can be done via a computer.

We now do several examples.

Example 1.8. The following rings are *F*-split.

- (1) $R = k[x_1, \dots, x_n]/(x_1 \cdots x_n)$. Notice that $(x_1 \cdots x_n)^{p^e-1} \notin (x_1^{p^e}, \dots, x_n^{p^e}) = m^{[p^e]}$. (2) $R = k[x, y, z]/(x^2 yz)$. Notice that $(x^2 yz)^{p^e-1}$ has a term $(yz)^{p^e-1}$ which does not appear in $m^{[p^e]}$.
- (3) $R = k[x, y, z]/(x^2 y^2 z)$ if the characteristic of k is not 2. In this case, $(x^2 y^2 z)^{p-1}$ has a term $\binom{p-1}{(p-1)/2} x^{p^e-1} y^{p^e-1} z^{\frac{p^e-1}{2}}$ and so the question is whether p divides the binomial coefficient. But it is clear that it does not.
- (4) $R = k[x, y, z]/(x^3 + y^3 + z^3)$ if the characteristic of k is 7 (check it yourself). One can also check that it is not F-split for characteristics 2, 3, 5 and more generally if p = 2 $\mod 3.$

Fedder's Lemma suggests the following question.

Question 1.9. Given an arbitrary ring T with quotient R = T/I. Is it true that every map $\phi \in \operatorname{Hom}_{R}(F^{e}_{*}R, R)$ is induced from a map $\phi \in \operatorname{Hom}_{T}(F^{e}_{*}T, T)$?

The answer to this question is no as the following example demonstrates:

Example 1.10. Consider $S = k[x, y, z], T = k[x, y, z]/(x^2 - yz)$ and R = k[x, y, z]/(x, y). The map $\Phi_R: F_*R \to R$ which sends z^{p-1} to 1 and the other z^i to zero is induced by maps written as $\Phi_S(w \cdot \underline{)}$ where Φ_S is the F_*S -module generator of $\operatorname{Hom}_S(F_*S, S)$ discussed above and w is an element of the coset $(xy)^{p-1} + (x^p, y^p)$. We have to ask ourselves whether such a w can be inside $((x^2 - yz)^{p-1}) + (x^p, y^p)$, and the answer is clearly no.

2. Very basic facts about Frobenius splitting

First we discuss the difference between F-purity and F-splitting.

Definition 2.1. A ring R of characteristic p > 0 is said to be F-pure if for every R-module M, the map $M \otimes R \to M \otimes F_*R$ is pure.

Clearly an F-split ring is F-pure. Furthermore, if R is F-finite, then an F-pure ring is also F-split (see The notion of F-purity is much better behaved outside the F-finite context. However, we won't be going there.

In an F-finite scheme, F-purity is used interchangably with local F-splitting. An Fsplitting (without a "local" qualifier) is always viewed as a global statement.

Here we list (and prove) a number of basic facts about Frobenius splittings, again mostly in the local context.

Theorem 2.2. Suppose that R is an F-finite ring. Then the following hold: (a) If R is Frobenius split (F-split) then R is reduced.

- (b) If R_Q is Frobenius split for some $Q \in \text{Spec } R$, then R is Frobenius split in a neighborhood of Q.
- (c) R is F-split if and only if $R_{\mathfrak{m}}$ is F-split for every maximal ideal \mathfrak{m} if and only if R_Q is F-split for every prime ideal Q.
- (d) If $R \subseteq S$ is a split inclusion of rings and S is F-split, then R is also F-split.
- (e) If R is F-split, then for every minimal prime $q \subseteq R$, R/q is also F-split.
- (f) If $\phi: F_*^e R \to R$ is any *R*-linear map and *I* and *J* are ϕ -compatible ideals, then so is $I + J, I \cap J, \sqrt{I}$, and also $I: \mathfrak{a}$ for any ideal \mathfrak{a} .

3. (Weak/Semi)Normality and Frobenius splitting

Today we'll prove that a F-split ring is weakly normal and thus seminormal (so first I'll define these terms).

First we'll talk about some hand-wavy geometry. Seminormality (and weak normality) are ways of forcing all gluing of your scheme is as transverse as possible. So first what is "gluing"?

Suppose that R is an F-finite reduced ring with normalization R^N (domain of finite type over a field is fine). The semi-normalization R^{SN} (and weak normalization R^{WN} of R is a partial normalization of R inside R^N). Since R is F-finite it is excellent, and so all these extensions are finite extensions (ie, we don't have to worry about extreme funny-ness).

Definition 3.1. [AB69], [GT80], [Swa80] A finite integral extension of reduced rings $i : A \subset B$ is said to be *subintegral* (respectively *weakly subintegral*) if

- (i) it induces a bijection on the prime spectra, and
- (ii) for every prime $P \in \text{Spec } B$, the induced map on the residue fields, $k(i^{-1}(P)) \to k(P)$, is an isomorphism (respectively, is a purely inseparable extension of fields).

Remark 3.2. A subintegral extension of rings has also been called a quasi-isomorphism; see for example [GT80].

Remark 3.3. Condition (ii) is unnecessary in the case of extensions of rings of finite type over an algebraically closed field of characteristic zero.

Definition 3.4. [GT80, 1.2], [Swa80, 2.2] Let $A \subset B$ be a finite extension of reduced rings. Define ${}_{B}^{+}A$ to be the (unique) largest subextension of A in B such that $A \subset {}_{B}^{+}A$ is subintegral. This is called the *seminormalization of* A *inside* B. A is said to be *seminormal in* B if $A = {}_{B}^{+}A$. If A is seminormal inside its normalization, then A is called *seminormal*.

Definition 3.5. [AB69], [Yan85], [RRS96, 1.1] Let $A \subset B$ be a finite extension of reduced rings. Define ${}_{B}^{*}A$ to be the (unique) largest subextension of A in B such that $A \subset {}_{B}^{*}A$ is weakly subintegral. This is called the *weak normalization of* A *inside* B. A is said to be *weakly normal in* B if $A = {}_{B}^{*}A$. If A is weakly normal inside its normalization, then A is called *weakly normal*.

References

- [AB69] A. ANDREOTTI AND E. BOMBIERI: Sugli omeomorfismi delle varietà algebriche, Ann. Scuola Norm. Sup Pisa (3) 23 (1969), 431–450. MR0266923 (42 #1825)
- [Fed83] R. FEDDER: F-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461–480. MR701505 (84h:13031)

- [GT80] S. GRECO AND C. TRAVERSO: On seminormal schemes, Compositio Math. 40 (1980), no. 3, 325–365. MR571055 (81j:14030)
- [RRS96] L. REID, L. G. ROBERTS, AND B. SINGH: On weak subintegrality, J. Pure Appl. Algebra 114 (1996), no. 1, 93–109. MR1425322 (97j:13012)
- [Swa80] R. G. SWAN: On seminormality, J. Algebra 67 (1980), no. 1, 210-229. MR595029 (82d:13006)
- [Yan85] H. YANAGIHARA: On an intrinsic definition of weakly normal rings, Kobe J. Math. 2 (1985), no. 1, 89–98. MR811809 (87d:13007)