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As promised, we will also attempt to describe F∗OPn .

Example 0.1. Suppose that X = Pn. We first identify the possibly summands that can
appear (as Christopher Hacon pointed out in class today), write F∗OPn = OX ⊕ OX(a2) ⊕
· · · ⊕ OX(apn) where the ai < 0 are integers. Note 0 = Hn(X,OX) = Hn(X,F∗OX) =
Hn(X,OX ⊕OX(a2)⊕· · ·⊕OX(apn)).. By Serre duality this is the same as the vector space
dual of ⊕H0(X,OX(−n − 1) ⊗OX(−ai)). Since this is zero, none of the −ai can be larger
than n (and so none of the ai can be smaller than −n). In conclusion, the ai (for i > 1)
must all satisfy 0 > ai ≥ −n.

We begin with X = P2. We know that F∗OP2 = OX⊕OX(a2)⊕· · ·⊕OX(ap2) for various ai

(the rank can be computed on A2). We recall that on P2, h0(OX(n)) = dimk H
0(X,OX(n)) =(

n+2
2

)
. Thus h0((F∗OX)(1)) = h0(OX(p)) =

(
p+2
2

)
.

On the other hand h0 (OX(1)⊕OX(a2 + 1)⊕ · · · ⊕ OX(ap2 + 1)) =
(
3
2

)
+ the number of ai equal to −1.

So, we consider(
p+ 2

2

)
−
(

3

2

)
= (p+ 2)(p+ 1)/2− 3 =

1

2
p2 +

3

2
p− 2.

In characteristic p = 5, the number of summands total is 25. We know that a1 = 0, so there
is 1 summand of the form OX . We also compute

(
p+2
2

)
−
(
3
2

)
= 18. This leaves us with

25-1-18 = 6 summands left, by our above work, these must all be equal to −2. We can also
show it directly, which is what has to be done in higher dimensions.

Now we twist by (2). In this case, we have h0((F∗OX)(2)) = h0(OX(2p)) =
(
2p+2

2

)
=

(2p+2)(2p+1)/2. On the other hand OX(2)⊕OX(1)⊕18 has a
(
2+2
2

)
+((p+2)(p+1)/2−3)

(
3
2

)
dimensional vector space of global sections. In characteristic p = 5, h0((F∗OX)(2)) = 66
while

(
2+2
2

)
+ ((p + 2)(p + 1)/2)

(
3
2

)
= 60. Thus there must be exactly 6 terms of the form

OX(−2).
Trying this same computation in characteristic 7 gives us the following.

• 1 copy of OX .
• 33 copies of OX(−1).
• 15 copies of OX(−2).

In general, there is

• 1 copy of OX .
• 1

2
p2 + 3

2
p− 2 copies of OX(−1).

• 1
2
p2 − 3

2
p+ 1 copies of OX(−2).

One can check that these numbers add up to p2.
For X = P3, we know that h0(OX(n)) =

(
n+3

3

)
. Similar computations yield:

• 1 copy of OX
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• 1
6
p3 + p2 + 11

6
p− 3 = 1

6
(p+ 3)(p+ 2)(p+ 1)− 4 copies of OX(−1).

• 2
3
p3 − 11

3
p+ 3 = 1

6
(2p+ 3)(2p+ 2)(2p+ 1)− (1)(10)− (1

6
(p+ 3)(p+ 2)(p+ 1)− 4)(4)

copies of OX(−2)
• 1

6
p3 − p2 + 11

6
p− 1 = 1

6
(3p+ 3)(3p+ 2)(3p+ 1)− (1)(20)− (1

6
(p+ 3)(p+ 2)(p+ 1)−

4)(10)− (1
6
(2p+ 3)(2p+ 2)(2p+ 1)− (1)(10)− (1

6
(p+ 3)(p+ 2)(p+ 1))(4)) copies of

OX(−3)

One again checks that the sum of these equals p3.
I do not know of anything more general than this. It could easily be implemented into a

computer if one wanted to do the check for any fixed p and n (possibly even for a generic p
and fixed n). There also might be a better approach to this problem in the literature, but I
didn’t find it (except for the previously mentioned work of Thomsen).

1. Rational singularities

For about 40 years, rational singularities have been the gold standard of nice singularities.
In particular, given any class of singular varieties, the first question people tend to ask is,
“Does it have rational singularities?” We’ll see today that rational singularities are certainly
not so far from F -pure singularities.

Definition 1.1 (Watanabe). Given a normal graded d-dimensional ring R with R0 = k and
irrelevant ideal m = R, we define the a-invariant of R, as follows:

a(R) := max{n|(Hd
m(R))n 6= 0} = −min{n|(ωR)n 6= 0}.

Recall the following fact: If S is a standard N-graded ring (again, you don’t need standard)
with irrelevant ideal m = S+, with Y = ProjS, then

(H i
m(S))n = H i−1(Y,OY (n)),

for i > 1. This fact is quite easy to check using Čech cohomology.
If R is an R-pure ring, then Hd

m(R))n = 0 for n > 0. To see this, simply note that we
have injective maps F e : (Hd

m(R))n → (Hd
m(R))pen for all e and the right side vanishes for

e� 0 (this is completely clear by what we wrote above in a standard graded ring by Serre
vanishing). Therefore, if R is is F -split, then a(R) ≤ 0.

Watanabe also proved the following.

Theorem 1.2 (Watanabe). If R is a normal graded ring finitely generated over k = R0,
then R has rational singularities if and only if R satisfies the following two conditions:

(i) U = Spec(R) \ {m} has rational singularities.
(ii) R is Cohen-Macaulay and a(R) < 0.

Thus, it is obvious that there is a very close relationship between F -purity and rational
singularities. Notice that I haven’t defined Cohen-Macaulay or rational singularities.

1.1. Cohen-Macaulay rings. Briefly recall the following definition.

Definition 1.3. A local ring (R,m) of dimension d is called Cohen-Macaulay if there is a
regular sequence of length d on R. In other words, if x1, . . . , xn is a list of elements of m
such that xi+1 is a regular element (non-zero divisor) on R/(x1, . . . , xi) for all i. A scheme
is called Cohen-Macaulay if all of its stalks are Cohen-Macaulay local rings.
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Compare the notion of a regular sequence with the (weaker) notion of a (full) system of
parameters.

Definition 1.4. Elements x1, . . . , xn ∈ R (a local ring of dimension n) form a full system
of parameters if

√
x1, . . . , xn = m.

Remark 1.5. In fact, in a Cohen-Macaulay local ring, any system of parameters is a regular
sequence (so if you find a system of parameters that is not a regular sequence, the ring is
not Cohen-Macaulay). See [BH93].

Example 1.6. The following rings are Cohen-Macaulay.

• Any reduced one dimensional ring (choose any non-zero divisor).
• Any regular ring (any set of minimal generators of the maximal ideal will work).
• Any hypersurface singularity, or more generally, a complete intersection (this is a

ring cut out by part of a regular sequence in a regular ring, and so in particular a
Cohen-Macaulay ring, choose some additional parameters completing the sequence).

However, the following ring is not Cohen-Macaulay.

• k[x, y, u, v]/((x, y) ∩ (u, v)) = k[x, y, u, v]/((xu, xv, yu, yv)). To see this, first notice
that x − u is not a zero divisor (it doesn’t vanish on either component). Modding
out by x − u gives us the following ring T := k[x, y, v]/(x2, xv, xy, yv). We simply
have to convince ourselves that every element of the maximal ideal of this ring is a
zero divisor but this is easy since x kills every element of the maximal ideal of T .

1.2. The Homological viewpoint on Cohen-Macaulay, Gorenstein and Q-Gorenstein
conditions. First we remind ourselves what the derived category Db

coh(X) is. The objects
are complexes of OX-modules with coherent cohomology and only finitely many places with
non-zero cohomology. For example, if f : Y → X is proper, then Rf∗OY

1 is an object of
Db

coh(X). The morphisms of Db
coh(X) are more complicated, they are equivalence classes of

morphisms (up to chain homotopy equivalence) where we also invert all the OX-modules

Definition 1.7. Given a scheme X, an object ω
q

X ∈ Db
coh(X) is called a dualizing complex if

it has finite injective dimension (in other words, it is quasi-isomorphic to a FINITE complex
of injectives) and if RH om

q
OX

(ω
q

X , ω
q

X) ∼= OX .

That fancy RHom
q
OX

is some derived functor of Hom (ie, replace the second term by a
complex of injectives, and apply the first operation term by term).

Generally speaking, if you have a short exact sequence, such as 0 → A → B → C → 0,
we do get something like a short exact sequence when applying a derived functor like Rf∗
(where f : Y → X is a proper map of schemes). The output is called an exact triangle and

is denoted by Rf∗A // Rf∗B // Rf∗C
+1

// . Taking cohomology of each complex

Rf∗A , Rf∗B and Rf∗C yields the usual long exact sequence.

Remark 1.8. Dualizing complexes are unique up to shifting (you can shift any complex) and
up to tensoring with invertible sheaves. See [Har66] for details.

1Rf∗OY is defined as follows. Take an injective resolution I
q of OY and set Rf∗OY = f∗I

q . A Čech
resolution is fine too.
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Remark 1.9. Any quasi-projective scheme has a dualizing complex. Also, any F -finite affine
scheme has a dualizing complex. If X ⊆ Pn

k is a projective variety, ω
q

X can be defined to
be RH omOPn

k
(OX ,∧nΩ1

X/k). For a quasi-projective variety, simply localize. Such dualizing

complexes are nice because they are “normalized” at each maximal ideal of X (in particular
the cohomology of ω

q
X generically only lives in degree − dimX). In this case h−d(ω

q
X) is

called a canonical module for X and is denoted by ωX . Again, if X is normal, then any
divisor KX such that OX(KX) ∼= ωX is called a canonical divisor.

Definition 1.10. Suppose that R is a local ring with a dualizing complex ω
q

R and a canonical
module ωR (for example, R = Sq is the localization of a ring S that is normal and of finite
type over a field k, the canonical module was constructed as ωR := (∧dim SΩS/k)∗∗q ).

• We say that R is Cohen-Macaulay if ω
q

X is quasi-isomorphic to ωX .
• We say that R is quasi-Gorenstein2 if ωR

∼= R (in a non-local setting, this means that
ωX is locally free or equivalently, that KX is a Cartier divisor).
• We say that R is Q-Gorenstein if there exists an integer n > 0 such that nKR is

a Cartier divisor3 (it is probably best to assume that R is normal, unless you are
already familiar with the theory of Weil-divisors on non-normal varieties).
• We say that R is Gorenstein if it is Cohen-Macaulay and quasi-Gorenstein.

If R is not-necessarily local, we say that R is

Cohen-Macaulay/quasi-Gorenstein/Q-Gorenstein/Gorenstein

if Rq satisfies the same property for every q ∈ SpecR.

Remark 1.11. Notice that Q-Gorenstein rings are not necessarily Cohen-Macaulay (although
some authors make different definitions).

Proposition 1.12. Every regular ring is Gorenstein, and furthermore, every complete in-
tersection is also Gorenstein (in particular, a hypersurface singularity is Gorenstein). Most
generally, if R is Gorenstein/Cohen-Macaulay, then so is R/f for any regular element f ∈ R
(the converse holds locally on R).

Proof. See for example [BH93]. �

Example 1.13. The curve singularity R = k[x, y, z]/(xy, xz, yz) is Cohen-Macaulay but
not Gorenstein. To check that it is Cohen-Macaulay, simply notice that it is reduced and
1-dimensional. To see that it is not Gorenstein, we take a regular element f = x+ y− z and
notice that R/f = k[x, y]/(xy, x2 + xy, xy + y2) = k[x, y]/(x2, xy, y2). So we need merely
check whether R/f is Gorenstein. By [BH93, Exercise 3.2.15], it is enough to find non-zero
ideals I and J such that I ∩ J = 0. But that is easy I = (x), J = (y).

Finally, we also state Grothendieck duality.

Theorem 1.14. [Har66] Given a map of schemes f : Y → X of finite type, there exists a
functor f ! : Db

coh(X)→ Db
coh(Y ). If furthermore, f is proper then one has the following:

(i) RH om
q
OX

(Rf∗F
q
,G

q
) ∼= Rf∗RH om

q
OY

(F
q
, f !G

q
) where F

q
,G

q ∈ Db
coh(X).

(ii) f !ω
q

X is a dualizing complex for Y (denoted now by ω
q

Y ).

2This is also sometimes called begin 1-Gorenstein
3You can have Weil divisors such that a power is a Cartier divisor, consider a ruling on the quadric cone
xy − z2.
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(iii) If f : Y → X is a finite map (for example, a closed immersion), f ! is identified with
RH omOX

(f∗OY , ) (viewed then as a module on Y ).

We will also use Kodaira vanishing and a relative version, Grauert-Riemenschneider van-
ishing.

Theorem 1.15 (Kodaira Vanishing). Suppose that X is a smooth variety of characteristic
zero and L is an ample line bundle on X. Then H i(X,ωX ⊗L ) = 0 for i > 0 or dually,
H i(X,L −1) = 0 for i < dimX.

Theorem 1.16. [GR70] Suppose that π : X̃ → X is a proper map of algebraic varieties in

characteristic zero with X̃ smooth. Then Riπ∗ωX̃ = 0 for i > 0.

Remark 1.17. Both of these theorems FAIL in characteristic p > 0.
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