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1. Flatness of Frobenius implies regular

Today, we’ll complete the proof that having a flat Frobenius map implies that X is regular
(a result of Kunz).

Theorem 1.1. Suppose that X is a scheme, then R is regular if and only if F e
∗OX is flat as

an OX-module for some e > 0.

Proof. We’ll need several lemmas, but let us sketch the proof first. The statement is local so
we may assume that X = SpecR where (R,m) is a local ring. Write m = (x1, . . . , xn) where
the xi are a minimal system of generators. Our goal is to show that n = dimR.

First observe that it is harmless to replace e by ne for any integer n > 0. Unlike what I
said in class, the proof works fine for non-algebraically closed residue fields.

Step 1. m[pe]/(m[pe])2 is a free R-module.
Step 2. Apply lemmas of Lech to conclude that lR(R/m[pe]) = pne for all p ∈ N .
Step 3. Assume R is complete and write R = S/a = k[[x1, . . . , xn]]/a. Then notice that

lS(S/m
[pe]
S ) = pne for all e ≥ 0. But this implies that a = 0 and so R = S. This actually

completes the proof of step 3.

We begin with the proof of step 1.

F∗m
[pe]/(m[pe])2 = (m/m2)⊗R F∗R = (m/m2)⊗( R/m)F∗(R/m

[pe])

because of flatness of F∗R over R. But the right side is a free F∗(R/m
[pe])-module. This

implies that the (minimal set of) generators xp
e

1 , . . . , x
pe

n of m[pe] are Lech-independent.

Definition 1.2. That a sequence of elements f1, . . . , fn ∈ R is called Lech-independent if
for any a1, . . . , an ∈ R such that a1x

pe

1 + · · ·+ anx
pe

n = 0, then ai ∈ m[pe].

We now begin step 2. For this, we begin with a Lemma.

Lemma 1.3. [Lec64, Lemma 3] If f1, . . . , fn are Lech-independent elements and f1 ∈ gR
for some g ∈ R, then g, f2, . . . , fn is also Lech-independent. Furthermore, (f2, . . . , fn) : g ⊆
(f1, . . . , fn)

Proof. Write f1 = gh. Suppose a1g + · · · + anfn = 0 multiplying the equation through by
h implies that a1 ∈ (f1, . . . , fn) ⊆ (g, . . . , fn) (this also proves the second statement of the
theorem). Say a1 = b1f1 + · · ·+ bnfn. Plugging this in, we get that

0 = (b1f1 + · · ·+ bnfn)g + a2f2 + · · ·+ anfn = b1gf1 + (b2g + a2)f2 + · · ·+ (bng + an)fn.

Therefore, big + ai ∈ (f1, . . . , fn) ⊆ (g, f2, . . . , fn) for i ≥ 2 and so ai ∈ (g, f2, . . . , fn) for
i ≥ 2 as desired. �
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This lemma, combined with the fact that xp
e

1 , . . . , x
pe

n are Lech-independent, proves that
xα1

1 , . . . , x
αn
n are Lech-independent for αi ≤ pe (or basically for any αi since we can make e

bigger). We now need another Lemma.

Lemma 1.4. [Lec64, Lemma 4] If f1, . . . , fn are Lech-independent and f1 = gh. Then

lR (R/(f1, . . . , fn)) = lR (R/(g, f2, . . . , fn)) + lR (R/(h, f2, . . . , fn)) .

Proof. First notice that

lR (R/(f1, . . . , fn)) = lR (R/(g, f2, . . . , fn)) + lR ((g, f2, . . . , fn)/(f1, . . . , fn))

.
However,

(g, f2, . . . , fn)/(f1, . . . , fn) = (gR + (f1, . . . , fn))/(f1, . . . , fn) ∼= R/((f1, . . . , fn) : gR)

. We certainly know that (f1, . . . , fn) : gR ⊇ (h, f2, . . . , fn) and we will show the converse
inclusion. Suppose then that ag = a1f1 + · · ·+anfn, then (a1h−a)g+a2f2 + · · ·+anfn = 0,
so that the a1h− a ∈ (f2, . . . , fn) : g ⊆ (f1, . . . , fn). But then a1h− a = b1f1 + · · ·+ bnfn =
b1gh+ · · ·+ bnfn which implies that a ∈ (h, b2, . . . , bn). �

We will explain how this lemma implies (inductively) that lR(R/m[pe]) = pne as desired.
We will show that lR (R/(xα1

1 , . . . , x
αn
n )) = α1 · α2 · · · · · αn by induction on

∑
i αi. The base

case is obvious.
If αi > 1, by the previous lemma, we know that

lR (R/(xα1
1 , . . . , x

αn
n ))

= lR
(
R/(xα1

1 , . . . , x
αi−1

i−1 , x
1
i , x

αi+1

i+1 , . . . , x
αn
n

)
+ lR

(
R/(xα1

1 , . . . , x
αi−1

i−1 , x
αi−1
i , x

αi+1

i+1 , . . . , x
αn
n )
)

= (α1 · · · · · αi−1 · 1 · αi+1 · · · · · αn) + (α1 · · · · · αi−1 · (αi − 1) · αi+1 · · · · · αn)

= α1 · · · · · αn
which completes the induction.

Finally, we do step 3 (which we already did). �

2. Criteria for local Frobenius splitting I (Fedder’s criteria)

Today, we’ll learn about a result called for the second statement, assume that ag+ a2f2 +
· · ·+anfn = 0, so Fedder’s criteria for local Frobenius splitting. We’ll also explore Frobenius
splitting of projective varieties vs Frobenius splitting of graded rings.

First local behavior. Suppose that S is an F -finite regular ring such that F∗S is a free
S-module (for example, this happens if S is local). Write R = S/I. Suppose that φ : F e

∗R→
R is R-linear. Consider the following diagram where the vertical arrows are the natural
quotients:

F e
∗S

��

ψ
// S

��

F e
∗R φ

// R

Because F e
∗S is free and thus projective, there exists a F e

∗S-module map ψ as labelled in
the diagram (which makes the diagram commute). This map is not unique! If we further
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assume that S is local, then if φ is surjective, then so must be ψ (since if ψ(S) ⊆ mS, then
φ(S/I) ⊆ mS/I = mR ( R.

Lemma 2.1. With the notation as above, if R has a Frobenius splitting φ : F e
∗R → R (ie,

an R-linear map that sends 1 to 1), then there is a Frobenius splitting ψ′ on S which also
induces a (possibly different) Frobenius splitting on R as in the diagram above.

Proof. We already saw the existence of a map ψ : F e
∗S → S which is surjective. Suppose

that ψ(x) = 1. Then consider the map ψ : F e
∗S → S defined by the rule ψ′( ) = ψ(x · ),

this is clearly a splitting. This map still induces a map on R (defined by φ′( ) = φ(x̄ · ))
and it is a splitting since ψ′ is). �

This suggests that in order to study the (possible) existence of F -splittings of R it might
be good to study the splittings on S which induce splittings on R. First suppose that S is a
regular local ring, let us study the maps φ ∈ HomS(F e

∗S, S). To do this, I’d like to describe
a little bit of duality for a finite map (Frobenius being the finite map).

In order to do this, we need a little bit of theory. So let’s quickly review (Grothendieck)
duality for a finite map.

Definition 2.2. Suppose that R is a local ring with a normalized dualizing complex ω
q
R.

Then the canonical module ωR of R is H−dimR(ω
q
R). A canonical module on an arbitrary

ring/scheme is a module whose localization is isomorphic the canonical module at every
prime/point.

Somewhat more explicitly, we can define the canonical module of R as follows. If X is
a normal irreducible scheme of (essentially) finite type over a field. One can define ωX as
follows:

ωX =
(
∧dimXΩ1

X/k

)∗∗
.

Here the symbol ∗∗ means apply the functor HomR( , R) twice.

Definition 2.3. A divisor KX on a normal scheme X such that OX(KX) ∼= ωX is called a
canonical divisor.

Canonical divisors are divisor classes on varieties over fields. This is much more ambiguous
on general schemes since ωX can be twisted by any line bundle and still be a canonical module
(we only defined it locally).

Theorem 2.4. [Har66] Let R ⊆ S be a finite inclusion of rings with dualizing complexes
and that ωR is a canonical module for R. Then:

(i) HomR(S, ωR) is a canonical module for S and if we are working with varieties of
finite type over a field, we may assume that the canonical module constructed in this
way for S, agrees with the one obtained by taking wedge-powers of ΩX/k.

(ii) If N is an S-module, then we have an isomorphism of S-modules HomR(N,ωR) ∼=
HomS(N,HomR(S, ωR)) ∼= HomS(N,ωS).

Remark 2.5. The functor HomR(S, ) is often called f [ or f ! where f : SpecS → SpecR is
the induced map.

We will apply this theorem to the case of the Frobenius map.
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Corollary 2.6. Suppose that X is a normal scheme of essentially finite type over an F -finite
field (or X = SpecR where R is an F -finite normal local ring). Then H omOX

(F e
∗OX ,OX) ∼=

OX((1− pe)KX).

Proof. Let U denote the regular locus of X so that X \ U is codimension 2 or higher. By
basic facts about the reflexive sheaves, see for example [Har94], it is enough to show this
isomorphism with X replaced by U (in other words, we may assume that X is regular). We
may write

H omOX
(F e
∗OX ,OX)

∼= H omOX
((F e
∗OX)⊗OX(KX),OX(KX))

∼= H omOX
((F e
∗OX(peKX)),OX(KX))

∼= H omF e
∗OX

(F e
∗OX(peKX), F e

∗OX(KX))
∼= F e

∗OX((1− pe)KX).

The funny hypotheses at the start of this proof are there to insure that sHomOX
(F e
∗OX ,OX(KX))

is isomorphic to OX(KX) (and not some other canonical module). �

This greatly restricts which varieties can be globally Frobenius split.

Corollary 2.7. Suppose that X is a Frobenius split variety, then H0(X,OX(−nKX)) 6= 0
for some n > 0. In particular, X cannot be projective and of general type.

Proof. If X is Frobenius split then φ ∈ HomOX
(F e
∗OX ,OX) ∼= OX((1 − pe)KX) is non-zero

for some φ. In fact, one can take e = 1 and so n = p− 1. �

Another interesting conclusion of this is the following.

Corollary 2.8. Suppose that X = SpecR where R is a normal F -finite local ring. If
OX((1− pe)KX) is locally free, then OX((1− pe)KX) is also locally free and thus isomorphic
to OX (this happens for example if R is Gorenstein). In particular, H omOX

(F e
∗OX ,OX) is

a cyclic F e
∗OX-module. A φ : F e

∗OX → OX which generates H omOX
(F e
∗OX ,OX) is called

a generating homomorphism.

Example 2.9. If X = Spec k[x1, . . . , xn], then the map which sends (x1 . . . xn)p
e−1 to 1 and

the other relevant monomials to zero, is a “generating map”. In the local case, there are
other generating maps as well (send some of the other monomials to non-zero things).

Now we need some notation.
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