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1. Assumptions and notation

Throughout all rings will be Noetherian and excellent. The excellent assumption can in
many cases be removed, but for simplicity we will keep it.

Often rings will be assumed to contain a field of characteristic p > 0. If R is a ring of
characteristic p > 0, it possesses that absolute Frobenius map F : R → R. This is the
map defined by F (r) = rp it is a map of rings. It thus turns R into an R-module with a
non-standard action. That is, r.x = rpx. We denote this R-module by F∗R. Why? Well, if
X = SpecR, then F : OX → F∗OX is the structural map associated to Frobenius. There
are other common notations as well.

(a) 1R.
(b) R1/p if R is reduced.

You may notice the number 1 in front of the R, and wonder why it’s there. The point is
that you can iterate Frobenius F e = F ◦ F ◦ · · · ◦ F and have induced module structures on
R, denoted by F e

∗R
∼= eR ∼= R1/pe

. It is useful to observe that F e
∗ is an exact functor.

These different notations for the same thing have different advantages. R1/p is useful
because it allows one to easily distinguish elements from R and F∗R. On the other hand, it
can lead to confusing statements since if we view I1/p ⊆ R1/p as the ideal of R1/p made up of
pth roots of I, then (I1/p)p = (Ip)1/p 6= I (the latter is an ideal of R, where the two former
are ideals of R1/p). I1/p also is not a decent notation for modules.

Definition 1.1. Given an ideal (x1, . . . , xn) = I ⊆ R, we use I [pe] to denote the ideal

(xp
e

1 , . . . , x
pe

n ).

It is easy to see that this definition is independent of the choice of generators of I since
I [pe] can also be identified with the F e

∗R-ideal I · (F e
∗R).

Example 1.2. Consider the ring R = Fp[x1, . . . , xn]. Then F∗R is a free R-module with

basis {xλ1
1 x

λ2
2 . . . xλn

n |0 ≤ λi ≤ p− 1}.

The object F∗R plays well with localization and completion.

Lemma 1.3. Suppose that R is a ring of characteristic p > 0, m is a maximal ideal and W
is a multiplicative set. Then

(i) W−1(F∗R) ∼= F∗(W
−1R)

(ii) F∗R̂ ∼= F̂∗R (where the second is completion as an R-module).

where the ˆ denotes completion with respect to m.
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Proof. The first statement follows since W−1(F∗R) = F∗((W
p)−1R) but (W p)−1R ∼= W−1R

since r/w = (rwp−1)/wp. For (ii), notice first that R̂ = lim←R/m
n = lim←R/(m

n)[pe] since
the two sequences of ideals are cofinal. Then

F̂ e
∗R = lim

←
(F e
∗R)/mn = lim

←
F e
∗ (R/(m

n)[pe]) = F e
∗ lim
←

(R/(mn)[pe]) = F e
∗ lim
←
R/mn = F e

∗ R̂.

�

Of course, there is another functor also, F ∗ which is defined by F ∗L = L ⊗ F∗OX (and
then viewed as an F∗OX = OX module via the action on the right). Unlike F∗, F

∗ is not
exact in general (although it sometimes is, as we will see). If L is a line bundle, then
F ∗L = L p. One can see this by looking at the transition functions and noticing that they
are raised to powers.

Definition 1.4. A ring of characteristic p > 0 is said to be F -finite if the Frobenius map is
a finite map. In other words, if R is reduced, this means that R1/p is a finite R-module.

Lemma 1.5. If R is F -finite, so is any quotient, localization, or completion at a maximal
ideal.

Proof. Suppose that R is F -finite, thus we have a surjective map of R-modules ⊕ni=1R→ F∗R
for some n. IfW is a mutiplicative set then tensoring withW−1R will give us a new surjection.
Completion is similar and quotienting out by an ideal is also straightforward. �

Note that thus if you start with a variety over an algebraically closed (or perfect) field,
anything you might ever end up working with is still F -finite (even if you eventually move
beyond having perfect residue fields) because k[x1, . . . , xn] is F -finite (as long as k is an
F -finite, eg perfect, field). The usual examples of non-perfect fields, Fp(x) are still F -finite!
Although Fp(x1, . . . , xn, . . . ) is not F -finite.

Technical lemmas we won’t prove.

Lemma 1.6. [?][?] If R is F -finite then R is excellent and it has a dualizing complex.

Remark 1.7. If you don’t know what a dualizing complex is, don’t worry about it.

In other words, if you assume F -finite, you’re working in a pretty geometric setting already.

2. Flatness of Frobenius

Suppose that R is a noetherian ring of characteristic p > 0. In [?], Kunz noticed the
following: If F∗R is flat as an R-module and R ⊆ S is unramified in codimension 1, then
R ⊆ S is unramified.

Definition 2.1. An extension R ⊆ S is called unramified is for every q ∈ S with p = q∩R,
one has that pS = qS and also that k(p) ⊆ k(q) is separable.

He then noticed that the condition that F∗R is a flat R-module is equivalent to R being
regular.

Theorem 2.2. [?] Suppose that R is a local ring of characteristic p > 0. Then R is regular
if and only if F∗R is flat as an R-module.
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Proof. [?] We’ll only prove the (⇒) direction today. We do not assume that R is F -finite.

Suppose that R is regular, then R̂ is a power series ring k[[x1, . . . , xn]] where k is the residue
field of R. We have the following diagram:

R� _

α

��

β
// R̂ k[[x1, . . . , xn]]

� _

��

k1/p[[x1, . . . , xn]]
� _

��

R1/p
γ

// R̂1/p k1/p[[x
1/p
1 , . . . , x

1/p
n ]]

Once we show that the right vertical column is flat, then we know that γ ◦ α is also flat.
This combined with the fact that γ is faithfully flat implies that α is flat by [?, Page 46].

So, we need to show that the right vertical column is flat. The inclusion k1/p[[x1, . . . , xn]] ⊆
k1/p[[x

1/p
1 , . . . , x

1/p
n ]] is clearly flat since the target is free as an R-module. The other inclusion

is also free since k1/p is a flat k-module (this requires a little bit of work, Kunz cites [?,
Chapter III, Section 5]). �

Thus on a regular variety X, F e
∗OX is a locally free sheaf (of F -finite rank assuming that

X is F -finite). In particular, F ∗ is an exact functor if and only if X is regular.

Proposition 2.3. If X = SpecR is an F -finite regular affine scheme, then F e : OX →
F e
∗OX splits as a map of OX-modules.

Proof. First we claim that the statement is local. Indeed, consider the map σ : HomR(F e
∗R,R)→

R defined by evaluation at 1. The map F e defined in the statement of the proposition splits
if and only if σ surjects. The surjectivity of σ is a local property (since R is F -finite), so
we can assume that R is local. Thus F e

∗R is a flat and thus free R-module. Therefore there
exist many surjective maps φ : F e

∗R→ R (project onto one component) we just need to see
that one of them is a splitting. Suppose φ(x) = 1 for some φ ∈ HomR(F e

∗R,R) and some
x ∈ F e

∗R, but then ψ( ) = φ(x · ) clearly is a splitting of F e. �

The splitting of Frobenius is a statement about the singularities of X. If it occurs, it
says something about the singularities being mild (we’ll see some very effective criteria for
checking this in a couple days).

Example 2.4. Let us compute F e
∗OX on X = P1

k, where k = k̄. We know that F e
∗OX =

OX(a1) ⊕ OX(a2) ⊕ · · · ⊕ OX(ape) because we are working on P1. We also know that
H0(X,F e

∗OX) = k so exactly one of the ai is equal to zero (and the rest are negative),
say a1 = 0. We will show that the rest of the ai = −1, to see this consider

kp
e+1 = H0(X, (F e

∗OX(pe))) = H0(X, (F e
∗OX)⊗OX(1))

= H0(X,OX(a1 + 1)⊕OX(a2 + 1)⊕ · · · ⊕ OX(ape + 1)) ≥ k2+(a2+2)+···+(ape+2).

But the only way this will happen is if each ai = −1 for i ≥ 2 (since they all already negative
numbers).

For X = P1, we saw that OX → F e
∗OX is also going to split (because 1 goes to 1).

However, not all smooth varieties which have locally split Frobenius have globally split
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Frobenius. Projective space does (as we’ll see, as do toric varieties in general and Fano
varieties in “most” characteristics).

Example 2.5. Suppose that X is a supersingular elliptic curve, see [?, Chapter IV, Section
4, page 332], in other words F : H1(X,OX)→ H1(X,F∗OX) is the zero map. Then X is not
Frobenius split. To prove it, observe that H1(X, ) is a functor. On the other hand, one
can show that if X is an ordinary elliptic curve, it is Frobenius split (more on this later).

Frobenius split varieties satisfy strong properties.

Lemma 2.6. Suppose that X is a variety whose Frobenius morphism splits. Then for any
ample line bundle L on X, H i(X,L ) = 0 for all i ≥ 0.

Proof. Note that OX → F e
∗OX splitting implies that L ⊗ OX → L ⊗ F e

∗OX = F e
∗ (OX ⊗

(F e)∗L ) = F e
∗L

pe
also splits. We then have H i(X,L ) → H i(X,F e

∗L
pe

) injects. But the
right side vanishes by Serre vanishing for e� 0 so thus the left side vanishes too. �

Even though Kodaira vanishing fails in positive characteristic, it holds for Frobenius split
varieties.

Theorem 2.7. Suppose that X is a projective Frobenius split variety. Then for any ample
line bundle L on X, H i(X,ωX ⊗L ) = 0 for i > 0.

Proof. It’s not hard, but we’ll prove it a little later. �

We also briefly mention a link to projective normality.

Definition 2.8. Suppose that Y ⊆ X is a closed subvariety of X. Given a map φ : F e
∗OX →

OX , we say that Y is φ-compatible if φ induces a map φ̄ : F e
∗OY → OY by restriction.

Theorem 2.9. If φ : OPn → OPn is a splitting of Frobenius, then any φ-compatible normal
Y ⊆ Pn is embedded in Pn projectively normally.

Proof. It is sufficient to show that H0(Pn,OPn(i))→ H0(Y,OY (i)) is surjective for all i (see
[?, Chapter II, Exercise 5.14]). Consider the following commutative diagram:

H0(Pn,OPn(pei))
φ(i)

//

γ

��

H0(Pn,OPn(i))

δ
��

H0(Pn,OY (pei))
φ̄(i)

// H0(Pn,OY (i))

By Serre vanishing, γ is surjective and φ̄(i) is also surjective because it is induced from a
splitting. Thus δ is surjective as well. �
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