F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 12/7-2010

KARL SCHWEDE

1. Kodaira-type vanishing in characteristic $p>0$

First we recall Kodaira's vanishing theorem.
Theorem 1.1. Kod53] Suppose that X is a smooth projective variety of dimension n, characteristic zero, and H is an ample divisor on V, then

$$
H^{i}\left(X, \mathcal{O}_{X}(-H)\right)=0
$$

for $i=0,1, \ldots, n-1$. Dually, $H^{i}\left(X, \omega_{X}(H)\right)=0$ for $i>0$ (this dual version is equivalent as long as the variety is Cohen-Macaulay, which holds for example for normal surfaces).

This was known previously for surfaces, [Zar95]. It fails in characteristic zero for arbitrarily singular varieties (although it holds for normal surfaces), see for example [AJ89].

This result is also false in characteristic $p>0$. We begin with Mumford's example (which is singular).

Example 1.2. Mum67, Example 6] Suppose that X_{0} is a normal surface in characteristic $p>0$ with an element $\alpha \in H^{1}\left(X_{0}, \mathcal{O}_{X_{0}}\right)$ such that $F(\alpha)=0$ (for example, $X=E \times \mathbb{P}^{1}$ where E is a supersingular elliptic curve).

Suppose that H_{0} is an irreducible hyperplane section of X_{0} and let $L_{0}=\mathcal{O}_{X_{0}}\left(H_{0}\right)$. Choose a open covering U_{i} of X_{0} that principalizes H_{0} and represent α as $\left\{\alpha_{i j}\right\}$ in Čech cohomology and choose $g_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{X_{0}}\right)$ so that $\alpha_{i j}^{p}=g_{i}-g_{j}$. Suppose that $\left.H_{0}\right|_{U_{i}}=V\left(h_{i}\right)$ for some $h_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{X_{0}}\right)$. Define an extension L of $K(X)$ by adjoining all roots of the equations:

$$
z_{i}^{p}-h_{i}^{p} z_{i}=g_{i}
$$

Note that then $g_{i}-z_{i}^{p}=-h_{i}^{p} z_{i}$. Define $\pi: X \rightarrow X_{0}$ to be the normalization of X_{0} inside L, and set $H=\pi^{*} H_{0}$ (note, H is ample since π is finite).

Claim 1. $\pi^{*} \alpha$ is contained in the subspace $H^{1}\left(X, \mathcal{O}_{X}(-H)\right) \subseteq H^{1}\left(X, \mathcal{O}_{X}\right)$ (note that $H^{0}\left(X, \mathcal{O}_{X}\right)$ surjects onto $\left.H^{0}\left(H, \mathcal{O}_{H}\right)\right)$.

Proof. We set $V_{i}:=\pi^{-1}\left(U_{i}\right)$. Now, $z_{i} \in \Gamma\left(V_{i}, \mathcal{O}_{X}\right)$ since z_{i} satisfies a monic equation with coefficients in $H^{0}\left(X_{0}, \mathcal{O}_{X_{0}}\right)$. This implies that

$$
\left.\begin{array}{rlr}
\pi^{*} \alpha & = & \\
& = & \\
& & {\left[\alpha_{i j}\right]} \\
& 1 &
\end{array} \alpha_{i j}-z_{i}+z_{j}\right]
$$

so that

$$
\begin{array}{rlr}
\left(\frac{\alpha_{i j}-z_{i}+z_{j}}{h_{i}}\right)^{p} & = & \frac{\alpha_{i j}^{p}-z_{i}^{p}+z_{j}^{p}}{h_{i}^{p}} \\
& = & \frac{\left(g_{i}-g_{j}\right)-z_{i}^{p}+z_{j}^{p}}{h_{i}^{p}} \\
& = & \frac{\left(g_{i}-z_{i}^{p}\right)-\left(g_{j}-z_{j}^{p}\right)}{h_{i}^{p}} \\
& = & -z_{i}+\left(h_{j} / h_{i}\right)^{p} z_{j} \\
& \in & \Gamma\left(V_{i} \cap V_{j}, \mathcal{O}_{X}\right)
\end{array}
$$

But this implies that $\left[\frac{\alpha_{i j}-z_{i}+z_{j}}{h_{i}}\right] \in \Gamma\left(V_{i} \cap V_{j}, \mathcal{O}_{X}\right)$ which itself implies that $\alpha=\left[\alpha_{i j}-z_{i}-z_{j}\right] \in$ $\Gamma\left(V_{i} \cap V_{j}, \mathcal{O}_{X}(H)\right)$ and the claim follows.

The result then follows by the following lemma.
Lemma 1.3. Mum67, Lemma 5] Let $\pi: X^{\prime} \rightarrow X$ be a finite surjective morphism of normal varieties over $k=\bar{k}$ such that $K(X) \subseteq K\left(X^{\prime}\right)$ is separable. Suppose that $\alpha \in H^{1}\left(X, \mathcal{O}_{X}\right)$ is such that $F(\alpha)=0$ and $\left.0=\pi^{*} \alpha \in H^{(} X^{\prime}, \mathcal{O}_{X^{\prime}}\right)$. Then $\alpha=0$.

Proof. As before, represent α as $\left\{\alpha_{i j}\right\}$ in Čech cohomology for some cover U_{i} of X. Again we have $\alpha_{i j}^{p}=g_{i}-g_{j}$ with $g_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{X_{0}}\right)$. Because $\pi^{*}(\alpha)=0$ there exists functions $h_{i} \in \Gamma\left(\pi^{-1}\left(U_{i}\right), \mathcal{O}_{X^{\prime}}\right)$ such that $\pi^{*}\left(\alpha_{i j}\right)=h_{i}-h_{j}$. Therefore,

$$
h_{i}^{p}-\pi^{*}\left(g_{i}\right)=h_{j}^{p}-\pi^{*}\left(g_{j}\right) .
$$

Thus there exists a $\beta \in \Gamma\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)$ such that $f^{*}\left(g_{i}\right)=h_{i}^{p}+\beta$ for all i. This implies that $\pi^{*}\left(g_{i}\right) \in K\left(X^{\prime}\right)^{p}$, which implies that $g_{i} \in K(X)^{p}$ for all i since $K(X) \subseteq K\left(X^{\prime}\right)$ is separable. Write $g_{i}=f_{i}^{p}, f_{i} \in K(X)$, and then since X is normal, we have that $f_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{X}\right)$. Then, $a_{i j}=f_{i}-f_{j}$ since $a_{i j}^{p}=g_{i}-g_{j}$. This implies $\alpha=0$ as desired.
Remark 1.4. While there is no guarantee that X is smooth,
We now discuss Kawamata-Viehweg vanishing in positive characteristic.
Theorem 1.5. Kaw82, Vie82] Suppose that X is a normal projective algebraic variety over an algebraically closed field of characteristic zero, B an effective \mathbb{Q}-divisor on X and D a Cartier (or \mathbb{Q}-Cartier integral) divisor. Assume that (X, B) is Kawamata log terminal and that $H=D-\left(K_{X}+B\right)$ is ample. Then $H^{i}(X, D)=0$ holds for an $i>0$.

We will show that many varieties fail this, at least if they are constructed out of bizarre curves, we follow Xie07.

Definition 1.6. Tan72] Suppose that C is a smooth curve and $f \in K(C)$. Define

$$
n(f)=\operatorname{deg}\left\lfloor\frac{1}{p} D(d f)\right\rfloor
$$

Here $D(d f)$ is the divisor associated to $d f \in \omega_{C}$. The Tango invariant of C is defined to be

$$
n(C)=\max \left\{n(f) \mid f \in K(C), f \notin(K(C))^{p}\right\} .
$$

A curve C is called a Tango curve if $n(C)>0$.

Before continuing, I'd like to discuss why Hiroshi Tango considered this notion, we will not include the proof at this time.

Theorem 1.7. Tan72] Let C be a curve of genus $g>0$ with Tango invariant $n(C)$, then:
(i) For any line bundle \mathscr{L} such that $\operatorname{deg} L>n(C)$, the Frobenius map $H^{1}\left(C, \mathscr{L}^{-1}\right) \rightarrow$ $H^{1}\left(C, F^{*} \mathscr{L}^{-1}\right)$ is injective (dually, $H^{0}\left(C,\left(F_{*} \omega_{C}\right) \otimes \mathscr{L}^{p}\right) \rightarrow H^{0}\left(C, \omega_{C} \otimes \mathscr{L}\right)$ is surjective).
(ii) If $n(X)>0$, then there exists a line bundle \mathscr{M} of degree $n(C)$ such that the Frobenius map $H^{1}\left(X, \mathscr{M}^{-1}\right) \rightarrow H^{1}\left(X, F^{*} \mathscr{M}^{-1}\right)$ is not injective.

Remark 1.8. The Tango invariant of \mathbb{P}^{1} is -1 .
Example 1.9. Tan72] The following curve $x^{3} y+y^{3} z+z^{3} x=0$ in \mathbb{P}^{2} is a genus 3 smooth Tango curve in characteristic 3. The partial derivatives are z^{3}, x^{3}, y^{3} and so it is indeed smooth. Choose $f=(x-y) / z \in K(C)$. At the point $(0,0,1)$, we see that f vanishes to order 1 , and so f is not in $K(C)^{3}$. One can show that

$$
D(d f)=-3(0,0,1)-3(1,0,0)+\sum_{\alpha \alpha^{3}=\alpha+1} \lambda(1-\alpha,-1,1)+\text { other positive terms. }
$$

where $\lambda \geq 3 . n(f) \geq 1$.
Assuming $f \notin(K(C))^{p}, d f \neq 0$ so that $D(d f) \sim K_{C}$ and has degree $2 g-2$ where $g=g(C)$ is the genus of C. Also notice that $n(C) \leq\lfloor(2 g-2) / p\rfloor$, thus $n(C)>0$ implies that $g>1$. There are many examples of Tango curves.

We have the following two short exactly sequences (just like we explored in the proof of Hara's lemma):

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{C} \rightarrow F_{*} \mathcal{O}_{C} \rightarrow \mathcal{B}^{1} \rightarrow 0 \\
0 & \rightarrow \mathcal{B}^{1} \rightarrow F_{*} \Omega_{C} \rightarrow \Omega_{C} \rightarrow 0
\end{aligned}
$$

Here \mathcal{B}^{1} is the image of $d: F_{*} \mathcal{O}_{C} \rightarrow F_{*} \Omega_{C}$.
Lemma 1.10. Xie07 With notation as above let L be a divisor on C, then $H^{0}\left(C, \mathcal{B}^{1}(-L)\right)=$ $\{d f \mid f \in K(C), D(d f) \geq p L\}$. Furthermore, $n(C)>0$ if and only if there exists an ample divisor L on C such that $H^{0}\left(C, \mathcal{B}^{1}(-L)\right) \neq 0$.

Proof. Twisting the second equation above by $-L$ we get

$$
0 \rightarrow \mathcal{B}^{1}(-L) \rightarrow F_{*}\left(\Omega_{C}(-p L)\right) \rightarrow \Omega_{C}(-L) \rightarrow 0
$$

Now, $H^{0}\left(C, \Omega_{C}(-p L)\right)=\left\{\omega \in \Omega_{C} \mid D(\omega) \geq p L\right\}$, so that

$$
H^{0}\left(C, \mathcal{B}^{1}(-L)\right)=\{d f \mid f \in K(C), D(d f) \geq p L\}
$$

For the second statement, assume that $n(C)>0$, thus there exists an $f_{0} \in K(C)$ such that $n\left(f_{0}\right)=\operatorname{deg}\left\lfloor D\left(d f_{0}\right) / p\right\rfloor>0$. Let $L=\left\lfloor D\left(d f_{0}\right) / p\right\rfloor$. Certainly $\operatorname{deg} L>0$ and $D\left(d f_{0}\right) \geq p L$ and so $d f_{0} \in H^{0}\left(C, \mathcal{B}^{1}(-L)\right) \neq 0$ as desired. The converse direction merely reverses this.

Using Tango curves, Raynaud constructed a smooth counterexample to Kodaira vanishing in each characteristic. These ideas have recently been further explored by Xie, and we have the following theorem.

Theorem 1.11. Xie07 Suppose that C is a tango curve, then there exists a \mathbb{P}^{1}-bundle $f: X \rightarrow C$ an effective \mathbb{Q}-divisor B and an integral divisor D on X such that (X, B) is KLT (in fact, B has $S N C$ support with coefficients <1) and $H=D-\left(K_{X}+B\right)$ is ample but $H^{1}(X, D)=0$.

Proof. This is taken from [Xie07]. We choose a divisor L on C such that $\operatorname{deg} L>0$ and $H^{0}\left(C, \mathcal{B}^{1}(-L)\right) \neq 0$. Set $\mathscr{L}=\mathcal{O}_{C}(L)$, we then obtain

$$
0 \rightarrow H^{0}\left(C, \mathcal{B}^{1}(-L)\right) \rightarrow H^{1}\left(C, \mathscr{L}^{-1}\right) \rightarrow H^{1}\left(C, \mathscr{L}^{-p}\right)
$$

Choose $\alpha \in H^{0}\left(C, \mathcal{B}^{1}(-L)\right)$ with image $\bar{\alpha} \in H^{1}\left(C, \mathscr{L}^{-1}\right) \cong \operatorname{Ext}_{C}^{1}\left(\mathscr{L}, \mathcal{O}_{C}\right)$. Thus we obtain an extension

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow \mathscr{E} \rightarrow \mathscr{L} \rightarrow 0
$$

Apply F^{*} and obtain

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow F^{*} \mathscr{E} \rightarrow \mathscr{L}^{p} \rightarrow 0
$$

which corresponds to the extension class of $F^{*} \bar{\alpha}$, but this class is zero...
Let $f: X=\mathbb{P}(\mathscr{E}) \rightarrow C$ be the \mathbb{P}^{1} bundle over C, with associated $\mathcal{O}_{X}(1)$ and fiber G. The surjection $\mathscr{E} \rightarrow \mathscr{L} \rightarrow 0$ induces a section $\sigma: C \rightarrow X$ by [Har77, IV, Prop 2.6] with image E. Furthermore, $f^{*} \mathcal{O}_{C}=\mathcal{O}_{X} \cong \mathcal{O}_{X}(1) \otimes \mathcal{O}_{X}(-E)$ so that $\mathcal{O}_{X}(E)=\mathcal{O}_{X}(1)$. We use the fact the sequence above is split and then and obtain:

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow\left(F^{*} \mathscr{E}\right) \otimes \mathscr{L}^{-p} \rightarrow \mathscr{L}^{-p} \rightarrow 0
$$

Thus we have the composition

$$
H^{0}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{0}\left(C,\left(F^{*} \mathscr{E}\right) \otimes \mathscr{L}^{-p}\right) \rightarrow H^{0}\left(C, S^{p}(\mathscr{E}) \otimes \mathscr{L}^{-p}\right) \cong H^{0}\left(X, \mathcal{O}_{X}(p) \otimes f^{*} \mathscr{L}^{-p}\right)
$$

Thus we have a section $t \in H^{0}\left(X, \mathcal{O}_{X}(p) \otimes f^{*} \mathscr{L}^{-p}\right)$ (corresponding to the image of 1). Therefore, we have a curve C^{\prime} on X with $\mathcal{O}_{X}\left(C^{\prime}\right) \cong \mathcal{O}_{X}(p) \otimes f^{*} \mathscr{L}^{-p}$.

Claim 2. We claim that C^{\prime} is smooth and also that $C^{\prime} \cap E=\emptyset$.
Proof. We won't work out the details, but only sketch some evidence. Certainly $C^{\prime} . E=$ $(p E-p(\operatorname{deg} L) G) \cdot E=p E^{2}-p(\operatorname{deg} L)$ where E^{2} is the degree of \mathscr{E} which is clearly $\operatorname{deg} L$. Thus as long as C^{\prime} is irreducible, the second claim is obvious.

In fact, E and C^{\prime} both correspond to splittings onto distinct terms of the split exact sequence

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow F^{*} \mathscr{E} \rightarrow \mathscr{L}^{p} \rightarrow 0
$$

compare with [Har77, Chapter V, Exercise 2.2].
Choose c a rational number satisfying $1 / p<c<1$ such that $c p \notin \mathbb{Z}$. Set $q=\lfloor c p\rfloor-1$, and note that $q \geq 0$. Set $B=c C^{\prime}$ and $D=q E+f^{*}\left(K_{C}-q L\right)$. Then

$$
\begin{array}{r}
H=D-\left(K_{X}+B\right) \\
\equiv(\lfloor c p\rfloor-1) E+f^{*}\left(K_{C}-q L\right)-K_{X}-c C^{\prime} \\
\equiv(\lfloor c p\rfloor-1) E+f^{*}\left(K_{C}-(\lfloor c p\rfloor-1) L\right)-\left(-2 E+f^{*} K_{C}-f^{*} L\right)-c(p E-p f * L) \\
\equiv(\lfloor c p\rfloor+1-c p) E+(c p-\lfloor c p\rfloor) f^{*} L
\end{array}
$$

In particular, E is relatively ample and thus H is also ample. Clearly (X, B) is KLT.

Now, we need to show that $H^{1}(X, D) \neq 0$. Now, $D . G \geq 0$, thus by [Har77, Lemma 2.4], $R^{1} f_{*} \mathcal{O}_{X}(D)=0$ and $f_{*} \mathcal{O}_{X}(D)$ is locally free. Then

$$
\begin{array}{r}
H^{1}(X, D) \\
=H^{1}\left(C, f_{*} \mathcal{O}_{X}(D)\right) \\
=H^{0}\left(C,\left(f_{*} \mathcal{O}_{X}(D)\right)^{\vee} \otimes \omega_{C}\right)^{\vee} \\
=H^{0}\left(C,\left(f_{*} \mathcal{O}_{X}\left(D-f^{*} K_{C}\right)\right)^{\vee}\right)^{\vee} \\
=H^{0}\left(C, \mathcal{O}_{C}(q E-q L)^{\vee}\right)^{\vee} \\
=H^{0}\left(C,\left(S^{q}(\mathscr{E})^{\vee} \otimes \mathscr{L}^{q}\right)\right)^{\vee} .
\end{array}
$$

Now \mathscr{L}^{q} is a quotient of $S^{q}(\mathscr{E})$, so \mathscr{L}^{-q} is a subsheaf of $S^{q}(\mathscr{E})^{\vee}$. Thus,

$$
H^{1}(X, D)^{\vee}=H^{0}\left(C, S^{q}(\mathscr{E})^{\vee} \otimes \mathscr{L}^{q}\right) \supseteq H^{0}\left(C, \mathscr{L}^{-q} \otimes \mathscr{L}^{q}\right)=H^{0}\left(C, \mathcal{O}_{C}\right)=k
$$

proving the theorem.
Q. Xie also proves the following result:

Theorem 1.12. Xie07] If there is a counter-example to the Kawamata-Viehweg vanishing theorem on a ruled surface $f: X \rightarrow C$, then either C is a Tango curve or all sections are ample.

He also conjectures the following:
Conjecture 1.13. If there is a counter-example to the Kawamata-Viehweg vanishing theorem on a normal projective surface X, then there exists a dominant rational map from X to a smooth projective Tango curve C.

References

[AJ89] D. Arapura and D. B. Jaffe: On Kodaira vanishing for singular varieties, Proc. Amer. Math. Soc. 105 (1989), no. 4, 911-916. MR952313 (89h:14013)
[Har77] R. Hartshorne: Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR0463157 (57 \#3116)
[Kaw82] Y. Kawamata: A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), no. 1, 43-46. MR675204 (84i:14022)
[Kod53] K. Kodaira: On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1268-1273. 0066693 (16,618b)
[Mum67] D. Mumford: Pathologies. III, Amer. J. Math. 89 (1967), 94-104. 0217091 (36 \#182)
[Tan72] H. Tango: On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J. 48 (1972), 73-89. 0314851 (47 \#3401)
[Vie82] E. Viehweg: Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1-8. MR667459 (83m:14011)
[Xie07] Q. XIE: Counterexamples to the kawamata-viehweg vanishing on ruled surfaces in positive characteristic, math/0702554.
[Zar95] O. Zariski: Algebraic surfaces, Classics in Mathematics, Springer-Verlag, Berlin, 1995, With appendices by S. S. Abhyankar, J. Lipman and D. Mumford, Preface to the appendices by Mumford, Reprint of the second (1971) edition. 1336146 (96c:14024)

