F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 11/18-2010

KARL SCHWEDE

1. Finitistic test ideals, tight closure for modules, and tight closure of PAIRS

Let us prove another variant of this below, first however, a lemma.
Lemma 1.1. Suppose that R is a d-dimensional F-finite local domain. Then $H_{\mathfrak{m}}^{d}(R) \otimes F_{*}^{e} R$ is naturally identified with $H_{\mathfrak{m}}^{d}\left(F_{*}^{e} R\right)$.

Proof. Choose a system of parameters x_{1}, \ldots, x_{d} for R, and compute local cohomology in terms of the Cech complex with respect to those parameters. $H_{\mathfrak{m}}^{d}(R)$ is then identified with the cokernel of the map

$$
\oplus R_{\hat{x_{i}}} \rightarrow R_{x_{1} \ldots x_{d}} .
$$

Tensoring that map with $F_{*}^{e} R$, gives us the term of the Čech complex corresponding to the system of parameters $x_{1}^{p^{e}}, \ldots, x_{d}^{p^{e}}$. This completes the proof, in fact one also sees that $H_{\mathfrak{m}}^{d}(R) \rightarrow H_{\mathfrak{m}}^{d}(R) \otimes F_{*}^{e} R$ is identified with $H_{\mathfrak{m}}^{d}(R) \rightarrow H_{\mathfrak{m}}^{d}\left(F_{*}^{e} R\right)$.

Proposition 1.2. Smi97] Suppose that R is a d-dimensional F-finite local domain. Then the tight closure of zero in $H_{\mathfrak{m}}^{d}(R)$ is the unique largest non-zero module $M \subseteq H_{\mathfrak{m}}^{d}(R)$ such that $F(M) \subseteq M$ where $F: H_{\mathfrak{m}}^{d}(R) \rightarrow H_{\mathfrak{m}}^{d}(R)=F_{*} H_{\mathfrak{m}}^{d}(R)=H_{\mathfrak{m}}^{d}\left(F_{*} R\right)$ is the map induced by Frobenius.

Proof. For simplicity, we assume that R is complete, in the general case use the faithfull flatness of $\operatorname{Hom}_{R}(\ldots, E)$. First we show that $F\left(0_{H_{\mathrm{m}}^{d}(R)}^{*}\right) \subseteq 0_{H_{\mathrm{m}}^{d}(R)}^{*}$. Suppose that $z \in 0_{H_{\mathrm{m}}^{d}(R)}^{*}$. Thus there exists $c \in R$ such that $0=c z^{p^{e}} \in H_{\mathfrak{m}}^{d}(R) \otimes F_{*}^{e} R$ for all $e \geq 0$ (by the previous lemma, we need not be careful about tensor products). Then $0=c^{p}\left(z^{p}\right)^{p^{e}} \in H_{\mathfrak{m}}^{d}(R)$, so $F(z) \in 0_{H_{\mathrm{m}}^{d}(R)}^{*}$.

Now suppose that N is any proper submodule of $H_{\mathfrak{m}}^{d}(R)$ such that $F(N) \subseteq N$. We know that $T:=\operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}(R) / N, E\right) \subseteq \operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}(R), E\right)=\omega_{R}$. But ω_{R} is rank-one, so there exists a $c \in R$ such that $c \omega_{R} \subseteq T$, thus we have the composition

$$
c \omega_{R} \subseteq T \subseteq \omega_{R}
$$

Dualizing again, we get

$$
H_{\mathfrak{m}}^{d}(R) \rightarrow H_{\mathfrak{m}}^{d}(R) / N \rightarrow c H_{\mathfrak{m}}^{d}(R)
$$

where the composition is multiplication by c. This implies that N is annihilated by c. Thus if $z \in N, c z^{p^{e}}=c F^{e}(z) \in c F^{e}(N) \subseteq c N=0$ for all $e \geq 0$, implying that $z \in 0_{H_{\mathrm{m}}^{d}(R)}^{*}$ and completing the proof.

Finally, we briefly define tight closure of pairs.

Definition 1.3. Tak04, HY03, Sch08b, Sch08a, HH90 Suppose R is an F-finite domain, $X=\operatorname{Spec} R$ and $\left(X, \Delta, \mathfrak{a}^{t}\right)$ is a triple. Further suppose that M is a (possibly nonfinitely generated) R-module and that N is a submodule of M. We say that an element $z \in M$ is in the $\left(\Delta, \mathfrak{a}^{t}\right)$-tight closure of N in M, denoted $N_{M}^{* \Delta, \mathfrak{a}^{t}}$, if there exists an element $0 \neq c \in R$ such that, for all $e \gg 0$ and all $a \in \mathfrak{a}^{\left\lceil t\left(p^{e}-1\right)\right\rceil}$, the image of z via the map

$$
\left(F_{*}^{e} i\right) \circ \mathbb{F}_{*}^{e}(\times c a) \circ F^{e}: M \longrightarrow M \otimes_{R} F_{*}^{e} R \xrightarrow{F_{*}^{e}(\times c a)} M \otimes_{R} F_{*}^{e} R \longrightarrow M \otimes_{R} F_{*}^{e} R\left(\left\lceil\left(p^{e}-1\right) \Delta\right\rceil\right)
$$

is contained in $N_{M}^{[q] \Delta}$, where we define $N_{M}^{[q] \Delta}$ to be the image of $N \otimes_{R} F_{*}^{e} R\left(\left\lceil\left(p^{e}-1\right) \Delta\right\rceil\right)$ inside $M \otimes_{R} F_{*}^{e} R\left(\left\lceil\left(p^{e}-1\right) \Delta\right\rceil\right)$.

Most of the theory of test elements / ideals can be generalized to this setting, although some of the arguments used so far do not work. See HY03, Tak04, Sch08b and Sch08a for some additional discussion.

2. Hara's surjectivity lemma

Our goal is to show the following theorem.
Lemma 2.1. Har98 Suppose that R_{0} is a ring of characteristic zero, $\pi: \widetilde{X}_{0} \rightarrow \operatorname{Spec} R_{0}$ is a log resolution of singularities, D_{0} is a π-ample \mathbb{Q}-divisor with simple normal crossings support. We reduce this setup to characteristic $p \gg 0$. Then the natural map

$$
\left(F^{e}\right)^{\vee}=\Phi_{\tilde{X}}: F_{*}^{e} \omega_{\tilde{X}}\left(\left\lceil p^{e} D\right\rceil\right) \rightarrow \omega_{\tilde{X}_{p}}(\lceil D\rceil)
$$

surjects.
We will show it in the following way. We follow Hara's proof.
Proposition 2.2. Suppose that X is a d-dimensional smooth variety (quasi-projective) of finite type over a perfect field k of characteristic $p>0$. ${ }^{1}$ Further suppose that $E=\sum E_{j}$ is a reduced simple normal crossings divisor on X. Suppose in addition that D is a \mathbb{Q}-divisor on X such that $\operatorname{Supp}(D-\lfloor D\rfloor)=\operatorname{Supp}(\{D\}) \subseteq \operatorname{Supp}(E)$.

Additionally, suppose that the following two vanishings hold:
(a) $H^{j}\left(X, \Omega_{X}^{i}(\log E)(-E-\lfloor-D\rfloor)\right)=0$ for $i+j=d+1$ and $j>1$.
(b) $H^{j}\left(X, \Omega_{X}^{i}(\log E)(-E-\lfloor-p D\rfloor)\right)=0$ for $i+j=d$ and $j>0$.

Then, the natural map

$$
H^{0}\left(X, F_{*} \omega_{X}(\lceil p D\rceil)\right)=\operatorname{Hom}_{\mathcal{O}_{X}}\left(F_{*} \mathcal{O}_{X}(\lfloor-p D\rfloor), \omega_{X}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}(\lfloor-D\rfloor), \omega_{X}\right)=H^{0}\left(X, \omega_{X}(\lceil D\rceil)\right)
$$

surjects.
Our plan is as follows:
(i) Prove the proposition.
(ii) Show for an ample \mathbb{Q}-divisor D reduced from characteristic $p \gg 0$, conditions (a) and (b) hold.
(iii) The e-iterated version of Hara's lemma will then follow from composing the surjectivity from the proposition and composition of maps.

[^0]In order to prove the proposition, we will need to briefly recall the Cartier operator. From here on out, X and E are as in Proposition 2.2. Consider the (log)de-Rham complex, $\Omega_{X}(\log E)$. This is not a complex of \mathcal{O}_{X}-modules (the differentials are not \mathcal{O}_{X}-linear). However, the complex

$$
F_{*} \Omega_{X}^{\dot{*}}(\log E)
$$

is a complex of \mathcal{O}_{X}-modules (notice that $d\left(x^{p}\right)=0$).
Definition-Proposition 2.3. Car57, [Kat70] [cf EV92, BK05]] There is a natural isomorphism (of \mathcal{O}_{X}-modules):

$$
C^{-1}: \Omega_{X}^{i}(\log E) \rightarrow \mathcal{H}^{i}\left(F_{*} \Omega_{X}^{\circ}(\log E)\right)
$$

Furthermore, $\left(C^{-1}\right)^{-1}$ for $i=d$ and $E=0$, induces a map $F_{*} \omega_{X} \rightarrow \mathcal{H}^{d}\left(F_{*} \Omega_{X}(\log E)\right) \cong \omega_{X}$ which corresponds to the natural dual of Frobenius ${ }^{2}$.

Let us explain how to construct this isomorphism C^{-1}. We follow EV92, 9.13] and Kat70]. We begin with C^{-1} in the case that $i=1$ and $E=0$. We work locally on X (which we assume is affine) and we define C^{-1} by its action on $d x \in \Omega_{X}^{i}(\log E), x \in \mathcal{O}_{X} ; C^{-1}(d x)=x^{p-1} d x$ (or rather, its image in cohomology). In the $E \neq 0$ case, if t is a local parameter of E, then we define $C^{-1}\left(\frac{d t}{t}\right)=d t / t$.

We should show that C^{-1} is additive, we start in the $E=0$ case. First notice that $d\left(x^{p-1} d x\right)=0$ so at least the image of $x^{p-1} d x$ is in the cohomology of the de Rham complex.

Now, $C^{-1}(d(x)+d(y))=C^{-1}(d(x+y))=(x+y)^{p-1} d(x+y)$, we need to compare this to $x^{p-1} d x+y^{p-1} d y$. Write $f=\frac{1}{p}\left((x+y)^{p}-x^{p}-y^{p}\right)$ (where the $\frac{1}{p}$ just formally cancels out the p s in the binomial coefficients). Then

$$
d f=d \sum_{i, j>0, i+j=p} \gamma_{i} x^{i} y^{p-i}=\left(\sum_{i>0, j>0, i+j=p-1} \gamma_{i} i x^{i-1} y^{p-i}\right) d x+\left(\sum_{i>0, j>0, i+j=p-1} \gamma_{i} p-i x^{i} y^{p-i-1}\right) d y
$$

where $\gamma_{i}=\frac{1}{p}\binom{p}{i}=\frac{(p-1)(p-2) \ldots 1}{i!(p-i)!}=\frac{1}{p-i}\binom{p-1}{i}=\frac{1}{i}\binom{p-1}{p-i}$. Thus

$$
d f=(x+y)^{p-1}(d x+d y)-x^{p-1} d x-y^{p-1} d y
$$

Therefore, $x^{p-1} d x+y^{p-1} d y$ and $(x+y)^{p-1} d(x+y)$ are the same in cohomology.
For the $E \neq 0$ case and t a defining equation of a component of E, simply observe that

$$
C^{-1}(d t)=C^{-1}\left(t \frac{d t}{t}\right)=t^{p} C^{-1}\left(\frac{d t}{t}\right)=t^{p} \frac{d t}{t}=t^{p-1} d t
$$

which at least shows that the definition of C^{-1} we gave is compatible, the additivity follows.
We define C^{-1} for $i>1$ using wedge powers of C^{-1} for $i=1$. We should also show that all these C^{-1} are isomorphisms. For simplicity, we work with the case that $X=\mathbb{F}_{p}[x, y]$ and $E=0$ (see [EV92] or [Kat70] for how to reduce the polynomial ring case in general), let us explicitly see that the first C^{-1} is an isomorphism.

First we show that C^{-1} is injective. Suppose that $C^{-1}(f d x+g d y)=0$, which means $C^{-1}(f d x+g d y)=d h$ for some $h \in \mathcal{O}_{X}$. Thus $f^{p} x^{p-1} d x+g^{p} y^{p-1} d y=d h=\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y$. Now, we know $f^{p} x^{p-1}=\sum \lambda_{i, j} y^{i p} x^{j p+p-1}=\frac{\partial h}{\partial x}$, but this is ridiculous because we claim that

[^1]this is the derivative of some h with respect to x. If you take a derivative of some polynomial in x with respect to x, no output can ever have $x^{j p+p-1}$ in it.

The surjectivity of C^{-1} is more involved. See for example, [], [] or [], and follows similar lines to the proof of the next lemma. The isomorphism of the higher C^{-1} is an application of the Künneth formula.

We also need the following lemma.
Lemma 2.4. Har98, Lemma 3.3] With notation as in Proposition 2.2. additionally let $B=\sum r_{j} E_{j}$ be an effective integral divisor supported on E such that each $0 \leq r_{j} \leq p-1$. It follows that the inclusion of complexes (of \mathcal{O}_{X}^{p}-modules)

$$
\Omega_{X}(\log E) \longleftrightarrow\left(\Omega_{X}^{\cdot}(\log E)\right)(B):=\left(\Omega_{\dot{X}}^{*}(\log E)\right) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(B)
$$

is a quasi-isomorphism.
Proof. First we explain the differential on $\left(\Omega_{X}^{\cdot}(\log E)\right)(B)$ because the tensor product with B is as an \mathcal{O}_{X}-module, it is not so clear what the differential is. However, we simply restrict the differential from $i_{*} \Omega_{X \backslash E}^{*}$ to $\left(\Omega_{X}^{*}(\log E)\right)(B)$.

Now, the question is local, so we assume that X is the spectrum of a local ring. Choose t_{1}, \ldots, t_{d} to be local parameters (which also form a p-basis), where the components E_{i} of E are defined by t_{1}, \ldots, t_{r} respectively. Consider the complexes:

$$
\mathscr{K}_{j}^{\cdot}=\left[0 \rightarrow \bigoplus_{i=0}^{p-1} t_{j}^{i} \mathcal{O}_{X}^{p} \rightarrow \bigoplus_{i=0}^{p-1}\left(t_{j}^{i} \frac{d t_{j}}{t_{j}^{\varepsilon_{j}}}\right) \mathcal{O}_{X}^{p}\right]
$$

where the middle-map is the usual d and where $\varepsilon_{j}=1$ if $j \leq r$ and is zero otherwise. Set

$$
\mathscr{J}_{j}^{\cdot}=t_{j}^{-r_{j}} \mathscr{K}_{j}^{\cdot}
$$

for $j \leq r$.
We certainly have inclusions $\mathscr{K}_{j}^{\bullet} \subseteq \mathscr{J}_{j}$, we claim that these are actually quasi-isomorphisms. We work in a very specific case, that of $k[x, y]$ where $E=\div X$. We only look at \mathscr{K}_{1}, of course the general case is exactly the same. We have the inclusion of complexes:

One can easily verify that the cokernel and kernel of the two rows "line-up" because r is between 0 and $p-1$. Thus we have proved our claim.

Now, we claim that

$$
\Omega_{X}^{\cdot}(\log E)=\mathscr{K}_{1}^{\bullet} \otimes_{\mathcal{O}_{X}^{p}} \mathscr{K}_{2}^{\bullet} \otimes \ldots \otimes_{\mathcal{O}_{X}^{p}} \mathscr{K}_{d} \cdot
$$

We'll check this for $X=\operatorname{Spec} \mathbb{F}_{p}[x, y]$ and $E=0$. Here $\mathscr{K}_{1}=\left[\bigoplus_{i=0}^{p-1} x^{i} \mathcal{O}_{X}^{p} \rightarrow \bigoplus_{i=0}^{p-1}\left(x^{i} d x\right) \mathcal{O}_{X}^{p}\right]$, and likewise $\mathscr{K}_{2}=\left[\bigoplus_{i=0}^{p-1} y^{i} \mathcal{O}_{X}^{p} \rightarrow \bigoplus_{i=0}^{p-1}\left(y^{i} d y\right) \mathcal{O}_{X}^{p}\right]$. Thus $\mathscr{K}_{1}^{\bullet} \otimes \mathscr{K}_{2}^{\bullet}$ is the complex associated to the double-complex

$$
\begin{aligned}
& \mathscr{K}_{1}^{1} \otimes_{\mathcal{O}_{X}^{p}} \mathscr{K}_{2}^{0} \cong(d x) \mathcal{O}_{X} \quad \mathscr{K}^{1} \otimes_{\mathcal{O}_{X}^{p}} \mathscr{K}^{2} \cong(d x \wedge d y) \mathcal{O}_{X} \\
& \mathscr{K}_{1}^{0} \otimes_{\mathcal{O}_{X}^{p}} \mathscr{K}_{2}^{0} \cong \mathcal{O}_{X} \operatorname{ar}[u] \longrightarrow \mathscr{K}_{1}^{0} \otimes_{\mathcal{O}_{X}^{p}} \mathscr{K}_{2}^{1} \cong(d y) \mathcal{O}_{X}
\end{aligned}
$$

The general case is similar, but messy to write down.
Arguing similarly, we have that

$$
\Omega_{X}^{\cdot}(\log E)(B) \cong \mathscr{J}_{1}^{\cdot} \otimes \ldots \mathscr{J}_{r}^{\cdot} \otimes \mathscr{K}_{r+1}^{\cdot} \otimes \ldots \mathscr{K}_{d}^{\cdot}
$$

and we have the natural (compatible) inclusion $\Omega_{\dot{X}}(\log E) \rightarrow \Omega_{X}^{\dot{X}}(\log E)(B)$ which are quasiisomorphisms by the Künneth formula.

References

[BK05] M. Brion and S. Kumar: Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston Inc., Boston, MA, 2005. MR2107324 (2005k:14104)
[Car57] P. Cartier: Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244 (1957), 426-428. 0084497 (18,870b)
[EV92] H. Esnault and E. Viehweg: Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR1193913 (94a:14017)
[Har98] N. Hara: A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981-996. MR1646049 (99h:13005)
[HY03] N. Hara and K.-I. Yoshida: A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3143-3174 (electronic). MR1974679 (2004i:13003)
[HH90] M. Hochster and C. Huneke: Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31-116. MR1017784 (91g:13010)
[Kat70] N. M. Katz: Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), no. 39, 175-232. 0291177 (45 \#271)
[Sch08a] K. Schwede: Centers of F-purity, arXiv:0807.1654, to appear in Mathematische Zeitschrift.
[Sch08b] K. Schwede: Generalized test ideals, sharp F-purity, and sharp test elements, Math. Res. Lett. 15 (2008), no. 6, 1251-1261. MR2470398
[Smi97] K. E. Smith: F-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159-180. MR1428062 (97k:13004)
[Tak04] S. Takagi: An interpretation of multiplier ideals via tight closure, J. Algebraic Geom. 13 (2004), no. 2, 393-415. MR2047704 (2005c:13002)

[^0]: ${ }^{1}$ We may as well assume $k=\mathbb{F}_{p}$ for simplicity, we'll only want this for finite fields, and all the arguments are essentially the same as over \mathbb{F}_{p}.

[^1]: ${ }^{2}$ This is important, it gives us a "canonical" map between these two modules (before it was always defined up to multiplication by units)

