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1. Finitistic test ideals, tight closure for modules, and tight closure of
pairs

Let us prove another variant of this below, first however, a lemma.

Lemma 1.1. Suppose that R is a d-dimensional F -finite local domain. Then Hd
m(R)⊗F e

∗R
is naturally identified with Hd

m(F e
∗R).

Proof. Choose a system of parameters x1, . . . , xd for R, and compute local cohomology in
terms of the Čech complex with respect to those parameters. Hd

m(R) is then identified with
the cokernel of the map

⊕Rx̂i
→ Rx1...xd

.

Tensoring that map with F e
∗R, gives us the term of the Čech complex corresponding to

the system of parameters xpe

1 , . . . , x
pe

d . This completes the proof, in fact one also sees that
Hd

m(R)→ Hd
m(R)⊗ F e

∗R is identified with Hd
m(R)→ Hd

m(F e
∗R). �

Proposition 1.2. [Smi97] Suppose that R is a d-dimensional F -finite local domain. Then
the tight closure of zero in Hd

m(R) is the unique largest non-zero module M ⊆ Hd
m(R) such

that F (M) ⊆M where F : Hd
m(R)→ Hd

m(R) = F∗H
d
m(R) = Hd

m(F∗R) is the map induced by
Frobenius.

Proof. For simplicity, we assume that R is complete, in the general case use the faithfull
flatness of HomR( , E). First we show that F (0∗

Hd
m(R)

) ⊆ 0∗
Hd

m(R)
. Suppose that z ∈ 0∗

Hd
m(R)

.

Thus there exists c ∈ R such that 0 = czpe ∈ Hd
m(R) ⊗ F e

∗R for all e ≥ 0 (by the previous
lemma, we need not be careful about tensor products). Then 0 = cp(zp)pe ∈ Hd

m(R), so
F (z) ∈ 0∗

Hd
m(R)

.

Now suppose that N is any proper submodule of Hd
m(R) such that F (N) ⊆ N . We know

that T := HomR(Hd
m(R)/N,E) ⊆ HomR(Hd

m(R), E) = ωR. But ωR is rank-one, so there
exists a c ∈ R such that cωR ⊆ T , thus we have the composition

cωR ⊆ T ⊆ ωR.

Dualizing again, we get

Hd
m(R)→ Hd

m(R)/N → cHd
m(R)

where the composition is multiplication by c. This implies that N is annihilated by c. Thus
if z ∈ N , czpe

= cF e(z) ∈ cF e(N) ⊆ cN = 0 for all e ≥ 0, implying that z ∈ 0∗
Hd

m(R)
and

completing the proof. �

Finally, we briefly define tight closure of pairs.
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Definition 1.3. [Tak04], [HY03], [Sch08b], [Sch08a], [HH90] Suppose R is an F -finite do-
main, X = SpecR and (X,∆, at) is a triple. Further suppose that M is a (possibly non-
finitely generated) R-module and that N is a submodule of M . We say that an element

z ∈ M is in the (∆, at)-tight closure of N in M , denoted N∗∆,at

M , if there exists an element
0 6= c ∈ R such that, for all e� 0 and all a ∈ adt(p

e−1)e, the image of z via the map

(F e
∗ i) ◦ Fe

∗(×ca) ◦ F e : M // M ⊗R F
e
∗R

F e
∗ (×ca)

// M ⊗R F
e
∗R // M ⊗R F

e
∗R(d(pe − 1)∆e)

is contained in N
[q]∆
M , where we define N

[q]∆
M to be the image of N ⊗R F e

∗R(d(pe − 1)∆e)
inside M ⊗R F

e
∗R(d(pe − 1)∆e).

Most of the theory of test elements / ideals can be generalized to this setting, although
some of the arguments used so far do not work. See [HY03], [Tak04], [Sch08b] and [Sch08a]
for some additional discussion.

2. Hara’s surjectivity lemma

Our goal is to show the following theorem.

Lemma 2.1. [Har98] Suppose that R0 is a ring of characteristic zero, π : X̃0 → SpecR0

is a log resolution of singularities, D0 is a π-ample Q-divisor with simple normal crossings
support. We reduce this setup to characteristic p� 0. Then the natural map

(F e)∨ = ΦX̃ : F e
∗ωX̃(dpeDe)→ ωX̃p

(dDe)
surjects.

We will show it in the following way. We follow Hara’s proof.

Proposition 2.2. Suppose that X is a d-dimensional smooth variety (quasi-projective) of
finite type over a perfect field k of characteristic p > 0. 1 Further suppose that E =

∑
Ej is

a reduced simple normal crossings divisor on X. Suppose in addition that D is a Q-divisor
on X such that Supp(D − bDc) = Supp({D}) ⊆ Supp(E).

Additionally, suppose that the following two vanishings hold:

(a) Hj(X,Ωi
X(logE)(−E − b−Dc)) = 0 for i+ j = d+ 1 and j > 1.

(b) Hj(X,Ωi
X(logE)(−E − b−pDc)) = 0 for i+ j = d and j > 0.

Then, the natural map

H0(X,F∗ωX(dpDe)) = HomOX
(F∗OX(b−pDc), ωX)→ HomOX

(OX(b−Dc), ωX) = H0(X,ωX(dDe))
surjects.

Our plan is as follows:

(i) Prove the proposition.
(ii) Show for an ample Q-divisor D reduced from characteristic p � 0, conditions (a)

and (b) hold.
(iii) The e-iterated version of Hara’s lemma will then follow from composing the surjec-

tivity from the proposition and composition of maps.

1We may as well assume k = Fp for simplicity, we’ll only want this for finite fields, and all the arguments
are essentially the same as over Fp.
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In order to prove the proposition, we will need to briefly recall the Cartier operator.
From here on out, X and E are as in Proposition 2.2. Consider the (log)de-Rham complex,
Ω

q
X(logE). This is not a complex of OX-modules (the differentials are not OX-linear).

However, the complex
F∗Ω

q
X(logE)

is a complex of OX-modules (notice that d(xp) = 0).

Definition-Proposition 2.3. [Car57], [Kat70] [cf [EV92], [BK05]] There is a natural iso-
morphism (of OX-modules):

C−1 : Ωi
X(logE)→ Hi(F∗Ω

q
X(logE))

Furthermore, (C−1)−1 for i = d and E = 0, induces a map F∗ωX → Hd(F∗Ω
q
X(logE)) ∼= ωX

which corresponds to the natural dual of Frobenius2.

Let us explain how to construct this isomorphism C−1. We follow [EV92, 9.13] and [Kat70].
We begin with C−1 in the case that i = 1 and E = 0. We work locally on X (which we assume
is affine) and we define C−1 by its action on dx ∈ Ωi

X(logE), x ∈ OX ; C−1(dx) = xp−1dx
(or rather, its image in cohomology). In the E 6= 0 case, if t is a local parameter of E, then
we define C−1(dt

t
) = dt/t.

We should show that C−1 is additive, we start in the E = 0 case. First notice that
d(xp−1dx) = 0 so at least the image of xp−1dx is in the cohomology of the de Rham complex.

Now, C−1(d(x) + d(y)) = C−1(d(x + y)) = (x + y)p−1d(x + y), we need to compare this
to xp−1dx+ yp−1dy. Write f = 1

p
((x+ y)p − xp − yp) (where the 1

p
just formally cancels out

the ps in the binomial coefficients). Then

df = d
∑

i,j>0,i+j=p

γix
iyp−i =

( ∑
i>0,j>0,i+j=p−1

γiix
i−1yp−i

)
dx+

( ∑
i>0,j>0,i+j=p−1

γip− ixiyp−i−1

)
dy

where γi = 1
p

(
p
i

)
= (p−1)(p−2)...1

i!(p−i)!
= 1

p−i

(
p−1

i

)
= 1

i

(
p−1
p−i

)
. Thus

df = (x+ y)p−1(dx+ dy)− xp−1dx− yp−1dy.

Therefore, xp−1dx+ yp−1dy and (x+ y)p−1d(x+ y) are the same in cohomology.
For the E 6= 0 case and t a defining equation of a component of E, simply observe that

C−1(dt) = C−1

(
t
dt

t

)
= tpC−1

(
dt

t

)
= tp

dt

t
= tp−1dt,

which at least shows that the definition of C−1 we gave is compatible, the additivity follows.
We define C−1 for i > 1 using wedge powers of C−1 for i = 1. We should also show that

all these C−1 are isomorphisms. For simplicity, we work with the case that X = Fp[x, y] and
E = 0 (see [EV92] or [Kat70] for how to reduce the polynomial ring case in general), let us
explicitly see that the first C−1 is an isomorphism.

First we show that C−1 is injective. Suppose that C−1(fdx + gdy) = 0, which means
C−1(fdx + gdy) = dh for some h ∈ OX . Thus fpxp−1dx + gpyp−1dy = dh = ∂h

∂x
dx + ∂h

∂y
dy.

Now, we know fpxp−1 =
∑
λi,jy

ipxjp+p−1 = ∂h
∂x

, but this is ridiculous because we claim that

2This is important, it gives us a “canonical” map between these two modules (before it was always defined
up to multiplication by units)
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this is the derivative of some h with respect to x. If you take a derivative of some polynomial
in x with respect to x, no output can ever have xjp+p−1 in it.

The surjectivity of C−1 is more involved. See for example, [], [] or [], and follows similar
lines to the proof of the next lemma. The isomorphism of the higher C−1 is an application
of the Künneth formula.

We also need the following lemma.

Lemma 2.4. [Har98, Lemma 3.3] With notation as in Proposition 2.2, additionally let
B =

∑
rjEj be an effective integral divisor supported on E such that each 0 ≤ rj ≤ p − 1.

It follows that the inclusion of complexes (of Op
X-modules)

Ω
q
X(logE) � � // (Ω

q
X(logE))(B) := (Ω

q
X(logE))⊗OX

OX(B)

is a quasi-isomorphism.

Proof. First we explain the differential on (Ω
q
X(logE))(B) because the tensor product with

B is as an OX-module, it is not so clear what the differential is. However, we simply restrict
the differential from i∗Ω

q
X\E to (Ω

q
X(logE))(B).

Now, the question is local, so we assume that X is the spectrum of a local ring. Choose
t1, . . . , td to be local parameters (which also form a p-basis), where the components Ei of E
are defined by t1, . . . , tr respectively. Consider the complexes:

K
q

j =

[
0→

p−1⊕
i=0

tijO
p
X →

p−1⊕
i=0

(tij
dtj
t
εj

j

)Op
X

]

where the middle-map is the usual d and where εj = 1 if j ≤ r and is zero otherwise. Set

J
q

j = t
−rj

j K
q

j ,

for j ≤ r.
We certainly have inclusions K

q
j ⊆J

q
j , we claim that these are actually quasi-isomorphisms.

We work in a very specific case, that of k[x, y] where E = ÷X. We only look at K1, of course
the general case is exactly the same. We have the inclusion of complexes:

⊕p−1
i=0x

iOp
X� _

��

//
⊕p−1

i=0 x
i dx

x� _

��

⊕p−1
i=0x

i−rOp
X

//
⊕p−1

i=0 x
i−r−1dx.

One can easily verify that the cokernel and kernel of the two rows “line-up” because r is
between 0 and p− 1. Thus we have proved our claim.

Now, we claim that

Ω
q
X(logE) = K

q
1 ⊗Op

X
K

q
2 ⊗ . . .⊗Op

X
K

q
d .
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We’ll check this forX = Spec Fp[x, y] andE = 0. Here K1 =
[⊕p−1

i=0 x
iOp

X →
⊕p−1

i=0 (xidx)Op
X

]
,

and likewise K2 =
[⊕p−1

i=0 y
iOp

X →
⊕p−1

i=0 (yidy)Op
X

]
. Thus K

q
1 ⊗K

q
2 is the complex asso-

ciated to the double-complex

K 1
1 ⊗Op

X
K 0

2
∼= (dx)OX K 1 ⊗Op

X
K 2 ∼= (dx ∧ dy)OX

K 0
1 ⊗Op

X
K 0

2
∼= OXar[u] // K 0

1 ⊗Op
X

K 1
2
∼= (dy)OX

The general case is similar, but messy to write down.
Arguing similarly, we have that

Ω
q
X(logE)(B) ∼= J

q
1 ⊗ . . .J

q
r ⊗K

q
r+1 ⊗ . . .K

q
d

and we have the natural (compatible) inclusion Ω
q
X(logE)→ Ω

q
X(logE)(B) which are quasi-

isomorphisms by the Künneth formula. �
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