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1. Tight closure

Definition 1.1. A finitistic test element 0 6= c ∈ R, is an element of R such that for every
ideal I and every z ∈ I∗,

czp
e ∈ I [pe]

for all e ≥ 0.

It should be highly unclear that such a test element exists. However, we have already
shown the following lemma.

Lemma 1.2. Given an F -finite domain R, there exists 0 6= c ∈ R such that for every
0 6= d ∈ R, c ∈ φ(dR) for some φ : F e

∗R→ R.

Corollary 1.3. The c in the above lemma is a finitistic test element.

Proof. Suppose that 0 6= d ∈ R is an element of R such that dzp
e ∈ I [pe] for all e > 0, it

follows from the statement above that there exists φ : F a
∗R → R such that φ(d) = c. Thus,

for e ≥ a,

czp
e

= φ(dzp
e+a

) ∈ φ
(
I [pe+a]

)
⊆ I [pe].

�

Definition 1.4. The finitistic test ideal τf (R) is defined to be the ideal of R generated by
all finitistic test elements. It can also be described as the set made up of all finitistic test
elements and zero.

Lemma 1.5. We have τf (R) = ∩I⊆R(I : I∗).

Proof. Suppose that c ∈ τfR, then czp
e ∈ I [pe] for all e ≥ 0, in particular for e = 0. Thus

cz ∈ I and c ∈ ∩I⊆R(I : I∗).
Conversely, suppose that c ∈ ∩I⊆R(I : I∗). Choose z ∈ I∗. Then I claim that zp

a ∈ (I [pa])∗

for all a ≥ 0. But czp
e ∈ I [pe] for all e ≥ 0 so that cp

a
(zp

a
)p

e ∈ (I [pa])[pe] for all a, and the
claim is proven. Thus czp

a ∈ I [pa] for all a ≥ 0 because c was chosen in the intersection,
which implies that c is a finitistic test element. �

Corollary 1.6. R is weakly F -regular if and only if τf (R) = R.

We now come to the proof of Briançon-Skoda theorem via tight closure.

Theorem 1.7. [] Let R be an F -finite domain, and (u1, . . . , un) = I ⊆ R an ideal. Then
for every natural number m,

Im+n ⊆ Im+n−1 ⊆ (Im)∗
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and so
τ(R)Im+n ⊆ Im.

which gives a very nice statement in the case that R is F -regular (and so τ(R) = R).

This proof is taken from []. For any y ∈ Im+n−1, we know that there exists 0 6= c ∈ R such
that cyl ∈ (Im+n−1)l for all l ≥ 0. Consider a monomial ua1

1 . . . uan
n where a1 + · · · + an =

l(m + n − 1)l. Write each ai = bil + ri where 0 ≤ ri ≤ l − 1. We claim that the sum of
the bi is at least m, which will imply that the monomial is contained in (Im)[l] for all l such
that l = pe. However, if the sum b1 + · · · + bm ≤ m − 1, then l(m + n − 1) =

∑
ai ≤

l(m− 1) + n(l − 1) = l(m+ n− 1)− n < l(m+ n− 1), which implies the claim.
Thus cyp

e ∈ (Im)∗ as desired. �

Remark 1.8. Previously, in the proof that test ideals and multiplier ideals coincided after

reduction mod p� 0, we used this theorem on adt(pe−1)e+r where r is the number of generators
of a. The tight-closure Briançon-Skoda theorem tells us that this is contained in adt(p

e−1)e.

1.1. Hilbert-Kunz(-Monsky) multiplicity. Recall the following definition:

Definition 1.9. Suppose that (R,m) is a d-dimensional local ring and I is an m-primary
ideal. We define the multiplicity of R (at I) to be

e(I, R) := lim
n→∞

d!(R/In)

nd
.

Note that R is regular if and only if e(m, R) = 1.

Using this as a guide, Kunz considered the following notion.

Definition 1.10. [Kun69], [Mon83] Suppose that (R,m) is a d-dimensional local ring. We
define the Hilbert-Kunz-Monsky multiplicity of R (at m) to be

eHKM(I, R) := lim
n→infty

(R/I [pe])

ped

Kunz showed that eHKM(m, R) = 1 if R is regular (we basically also did in the first few days
of class), and Watanabe-Yoshida [WY00] (and Huneke-Yao, [HY02]) showed the converse.

Remark 1.11. In fact, this e(I, R) can be viewed as some sort of leading coefficient of a
polynomial computing (R/In). While it is true that (R/I [pe]) = eHKM(I, R)ped +O(pe(d−1)),
the lower order terms are not generally a polynomial, unlike e(I, R)

Kunz actually thought that this limit didn’t exist, and even had a claimed counter-
example. (Un?)Fortunately, there was a mistake and Monsky later showed that the limit did
indeed exist. The reason we mention it now is the following theorem of Hochster-Huneke.

Theorem 1.12. [HH90] Suppose (R,m) is an equidimensional F -finite local domain. Further
suppose that I ⊆ J are two m-primary ideals. Then if J ⊆ I∗ if and only if eHKM(I, R) =
eHKM(J,R).

Proof. We will only prove one direction, for the converse, see [HH90]. Suppose then that
J ⊆ I∗, in other words, suppose that I∗ = J∗. We first show that there exists a c ∈ R◦ such
that cJ [q] ⊆ I [q] for all q � 0. But this is easy, choose a set of generators x1, . . . , xk of J .
Then by hypothesis, there exists a ci ∈ R such that cix

q
i ∈ I [q] for all q � 0. Let c be the
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product of the ci and note that cxqi ∈ I [q] for all q � 0. Therefore, J [q]/I [q] is a module with
at most k generators over R/(I [q] + (c)). Set S = R/(c). Thus J [q]/I [q] is a module with at

most k generators over S/(IS)[q]. Note that dimS ≤ dimR− 1.
But now we know that there is a constant CS such that λ(S/(IS)[q] ≤ CSq

d−1 (since
Hilbert-Kunz multiplicities exist). However, we can also map (S/(IS)[q])⊕k onto J [q]/I [q].
Therefore,

λ(J [q]/I [q]) ≤ kCSq
d−1hd−1.

Thus λ(R/J [q])− λ(R/I [q]) ≤ Cqd−1 for C = kCSh
d−1.

Therefore the J and I have the same Hilbert-Kunz multiplicity. �

2. Finitistic test ideals, tight closure for modules, and tight closure of
pairs

Definition 2.1. [HH90] Given a domain R and R-modules N ⊆M , we consider the natural
map

γe : M →M ⊗ F e
∗R

for each e. We say that z ∈M is in the tight closure of N in M if there exists a c ∈ R \ {0}
such that for all e ≥ 0, γe(z).c = z ⊗ c is contained in the image of N ⊗ F e

∗R→M ⊗ F e
∗R.

Remark 2.2. Suppose that M = R and N is an ideal. Then the image of N ⊗R F e
∗R inside

R ⊗R F e
∗R = F e

∗R is simply N [pe]. Thus this definition of tight closure coincides with the
usual one.

The case we are going to be primarily concerned with is when N = 0 ⊆ M . Generally
speaking, one can always reduce to studying this case by the following trick.

Lemma 2.3. Suppose N ⊆M is as above, then z ∈ N∗M if and only if z̄ ∈ 0∗M/N .

Proof. Now, z ∈ N∗M if and only if there exists 0 6= c ∈ R such that

γe(z)⊗ c ∈ Image (N ⊗ F e
∗R→M ⊗ F e

∗R) .

But this happens if and only if ¯γe(z) = 0 ⊆ (M/N)⊗ F e
∗R by right exactness of tensor. �

Remark 2.4. In general, given N ⊆M ⊆M ′, one has N∗M ( N∗M ′ . The problem is that ⊗ is
not left-exact.

Lemma 2.5. Suppose that R is strongly F -regular, then for every R-modules N ⊆ M ,
N = N∗M ⊆M .

Proof. Suppose that z ∈ N∗M . Thus there exists a 0 6= d ∈ R such that z ⊗ d is contained in
the image of N ⊗ F e

∗R→M ⊗ F e
∗R for all e ≥ 0. Choose φ : F a

∗R→ R which sends d 7→ 1.
We have the following diagram

N ⊗ F a
∗R

idN ⊗φ
//

f
��

N� _

g

��

M ⊗ F a
∗RidM ⊗φ

// M

We know that z ⊗ d is in the image of f , let ζ be an element of N ⊗ F a
∗R which maps to it.

Thus
g ((idN ⊗φ)(ζ)) = (idM ⊗φ)(z ⊗ d) = z
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But g is simply the inclusion of N into M which implies that z ∈ N as desired. �

We also have the converse statement.

Proposition 2.6. [HH90], [Hoc07] Suppose R is an F -finite local domain and that for every
R-module N ⊆M , N = N∗M , then R is strongly F -regular.

Proof. Let E denote the injective hull of the residue field R/m. We know 0∗E = 0 by
assumption. We will show that R is strongly F -regular.

By hypothesis, 0∗E = 0. Choose c ∈ R = F e
∗R and consider the map R → F e

∗R
which sends 1 7→ c. Tensoring with E, gives us a map γe,c : E → E ⊗R F e

∗R which
sends z to z ⊗ c. Now recall that we have an isomorphism F e

∗R ⊗ Hom(R,E) ∼= F e
∗R ⊗R

E ∼= HomR(HomR(F e
∗R,R), E) defined by the map which sends r ⊗ φ to the map h :

HomR(F e
∗R,R)→ E defined by the rule h(α) = φ(α(r)). Thus E → E ⊗R F e

∗R is identified
with

E ∼= HomR(HomR(R,R), E)→ HomR(HomR(F e
∗R,R), E).

The map is just induced by the inclusion R ⊆ F e
∗R in the first entry which sends 1 to c. Apply

HomR( , E) and Matlis duality. This gives us a map HomR̂(F e
∗ R̂, R̂) → HomR̂(R̂, R̂) ∼= R̂

induced by evaluation at c. In particular, γe,c is injective if and only if the evaluation-at-c-
map HomR(F e

∗R,R) → R is surjective (we can remove the completion signs due to faithful
flatness).

Consider now c = 1, we know that for any z ∈ E, 0 6= z⊗1 ∈ E⊗F e
∗R for infinitely many

e > 0. But if it holds for infinitely many e > 0, then it holds for all e ≥ 0 since γe,1 factors
through γe−1,1. Therefore, γe,1 is injective and R is F -split.

Now, again consider γe,c. γe,c is injective if and only if it is non-zero on the socle1 Suppose
that z ∈ ker(γe,c), in other words 0 = z⊗c ∈ E⊗F e

∗R. We claim that then also z ∈ ker(γe−1,c).
However, the composition

E
g
// E ⊗ F e−1

∗ R
f

// E ⊗ F e
∗R

z � // z ⊗ c � // z ⊗ cp,

is certainly zero, and since the map f is injective (because R is F -split), this implies that
g(z) = 0.

Therefore, the set of kernels of γe,c are a descending sequence of modules in E, an artinian
module. Therefore they eventually stabilize. However, no element is in all the kernels because
0∗E = 0. Thus some evaluation-at-c-map HomR(F e

∗R,R) → R is surjective, proving that R
is strongly F -regular. �

Generally speaking, using the same method as above, one can show that AnnR 0∗E = τ(R),
see for example [LS01]. In fact, any non-zero element of τ(R) can be used to “test” tight
closure in any module. Furthermore, τ(R) is generated by exactly the elements c ∈ R such
that cN∗M ⊆ N for all modules N ⊆M , see [Hoc07].

Conjecture 2.7. The (big/non-finitistic) test ideal τ(R) is equal to the finitistic test ideal
τf (R).

1The 1-dimensional submodule of E which is annihilated by m.
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