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Remark 0.1. If ∆ is effective, we see that (X,∆, at) is klt if and only if J (X,∆, at) = OX .
Furthermore, if (X,∆, at) is log canonical, then J (X,∆, at) is a radical ideal. Furthermore,
if (X,∆, at) is klt and ∆ ≥ 0, then b∆c = 0.

Example 0.2. Consider X = A2 and ∆ = 2
3

divX(xy(x− y)). A log resolution π : X̃ → X
can be obtained by doing one blow-up at the origin, use E to denote the exceptional divisor.
We set KX = 0, then

KX̃−π
∗(KX+∆) = KX̃−

2

3
divX̃(xy(x−y)) = E−2

3
(3E+C1+C2+C3) = −E−2

3
(C1+C2+C3)

where the Ci are the strict transforms of the three curves in the support of ∆. Thus (X,∆) is
log canonical, but not Kawamata/purely log terminal. Furthermore, J (X,∆) = (x, y) = m.

An example of a plt pair that is not klt is (A2, div(x)). Generally speaking the pair made
up of a smooth variety and a smooth divisor is always purely log terminal, but a pair made
up of a smooth variety and a simple normal crossings divisor is not plt – (A2, div(xy)) is not
purely log terminal (even though it is its own log resolution).

In general, klt singularities are rational, klt singularities are log canonical, Gorenstein
rational singularities are klt. Log canonical singularities are Du Bois and Gorenstein Du
Bois singularities are log canonical.

Proposition 0.3. [Elk81] If (X,∆) is klt and ∆ ≥ 0, then X has rational singularities.
If X is Gorenstein, then if X has rational singularities, X has canonical (and thus klt)
singularities.

Proof. Let π : X̃ → X be a log resolution. We have a natural inclusion OX̃ ⊆ OX̃(dKX̃ −
π∗(KX + ∆)e). Applying Rπ∗ gives us the composition

OX → Rπ∗OX̃ → Rπ∗OX̃(dKX̃ − π
∗(KX + ∆)− tGe) ∼= J (X,∆) = OX

This map is clearly an isomorphism in codimension 1, and so it is an isomorphism. Thus
OX → Rπ∗OX̃ splits, and so X has rational singularities.

In the Gorenstein case, for the converse direction, if ωX ∼= Rπ∗ωX̃ , thenOX ∼= Rπ∗OX̃(KX̃−
π∗KX). �

Proposition 0.4. [KK09] If (X,∆) is log canonical, then X has Du Bois singularities.

Proof. We only provide a proof in the Cohen-Macaulay case (which is the only case where

we defined Du Bois singularities). Set π : X̃ → X to be a log resolution with reduced
exceptional divisor E. There exists a natural inclusion ι : %∗ωX′(G) ⊆ ωX , so the question
is local. We may assume that X is affine and need only prove that every section of ωX is
already contained in %∗ωX′(G).
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Next, choose a canonical divisor KX′ and let KX = %∗KX′ . As ∆′ = %−1
∗ ∆, it follows that

the divisors KX′ + ∆′ and %−1
∗ (KX + ∆) = ∆′ may only differ in exceptional components.

We emphasize that these are actual divisors, not just equivalence classes (and so are B and
B′).

Since X and X ′ are birationally equivalent, their function fields are isomorphic. Let us
identify K(X) and K(X ′) via ρ∗ and denote them by K. Further let K and K ′ denote the
K-constant sheaves on X and X ′ respectively.

Now we have the following inclusions:

Γ(X, %∗ωX′(E)) ⊆ Γ(X,ωX) ⊆ Γ(X,K ) = K,

and we need to prove that the first inclusion is actually an equality. Let g ∈ Γ(X,ωX). So

(1) 0 ≤ divX(g) +KX ≤ divX(g) +KX + ∆

As (X,∆) is log canonical, there exists an m ∈ N such that mKX +m∆ is a Cartier divisor
and hence can be pulled back to a Cartier divisor on X ′. By the choices we made earlier, we
have that %∗(mKX +m∆) = mKX′ +m∆′ + Θ where Θ is an exceptional divisor.

However, using the fact that (X,∆) is log canonical, one obtains that Θ ≤ mG. Combining
this with (1) gives that

0 ≤ divX′(g
m) + %∗(mKX +m∆) ≤ m

(
divX′(g) +KX′ + ∆′ +G

)
,

and in particular we obtain that

divX′(g) +KX′ + ∆′ +G ≥ 0.

We claim that:

divX′(g) +KX′ +G ≥ 0.

Proof. By construction

(2) divX′(g) +KX′ +G = %−1
∗ (divX(g) +KX︸ ︷︷ ︸

≥0

) + F +G︸ ︷︷ ︸
exceptional

.

Where F is an appropriate exceptional divisor, though it is not necessarily effective. We also
have that

(3) divX′(g) +KX′ +G = divX′(g) +KX′ + ∆′ +G︸ ︷︷ ︸
≥0

− D′︸︷︷︸
non-exceptional

.

Now let A be an arbitrary irreducible component of divX′(g) + KX′ + G. If A were not
effective, it would have to be exceptional by (2) and non-exceptional by (3). Hence A must
be effective and the claim is proven. �

It follows that g ∈ Γ(X ′, ωX′(G)) = Γ(X, %∗ωX′(G)), completing the proof. �

0.1. The log terminal and log canonical conditions for cones. We study the condition
that (Y,∆Y ) has log canonical/terminal singularities when Y = SpecS is the affine cone over
a projective variety X and ∆Y corresponds to the pull-back of some Q-divisor ∆X on X via
the k∗-bundle Y \ V (S+)→ X (or rather the closure of the pullback).

Suppose that (X,∆X) is a log Q-Gorenstein pair and that A is an ample divisor. Set
S = ⊕H0(X,OX(nA)) to be the section ring and Y = SpecS and ∆Y as above.
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Proposition 0.5. The pair (Y,∆Y ) is klt (respectively lc) if and only if (X,∆X) is klt
(respectively lc) and −(KX + ∆X) = rA for some r ∈ Q>0 (respectively r ∈ Q≥0).

Remark 0.6. This proposition says that (X,∆X) is log Fano if and only if (Y,∆Y ) is klt for
some section ring. Likewise, (X,∆) is log Calabi-Yau is equivalent to the condition that
(Y,∆Y ) is lc with lc-center at the origin.

Proof. Certainly the fact that (X,∆X) is klt/lc is necessary because of the k∗-bundle de-
scription of Y \ V (S+)→ X described above. For simplicity we assume now that A is (very
(very)) ample. We can reduce to this case using Veronese cover tricks which I won’t describe
here.

First we ask ourselves what it means that (KY + ∆Y ) is Q-Cartier (recall, that KY is
just the sheaf associated to KX via pull-back). This means that n(KY + ∆Y ) is locally free,
and because we are working in the graded setting, this just means that OY (n(KY + ∆Y )) =
OY (m). But this is equivalent to the requirement that n(KX + ∆X) ∼ mA.

We now blow-up to origin of Y giving us a map π : Ỹ → Y . There is one exceptional
divisor E of this map and E is isomorphic to X. Furthermore, restricting OỸ (−E) to E
yields OX(A).

Write KỸ − π∗(KY + ∆Y ) = aE − π−1
∗ ∆Y . It is clear that π−1

∗ ∆Y |E = ∆X . However, we
also know that (KỸ + E)|E = KX . Rewriting our first equation gives us π∗(KY + ∆Y ) =
KỸ − aE + π−1

∗ ∆Y . Therefore

0 ∼ (KỸ + E − (a+ 1)E + π−1
∗ ∆Y )|E = KX + (a+ 1)A+ ∆Y

or in other words, −(KX + ∆Y ) ∼ (a + 1)A. In particular, if (Y,∆) klt (respectively lc)
then a > 0 (respectively a ≥ 0). Thus −(KX + ∆Y ) is some positive rational multiple of A
(respectively, −(KX + ∆Y ) is some non-negative multiple of A).

Conversely, if −(KX + ∆Y ) is some positive rational multiple of A and (X,∆X) is klt, it
can be shown that (Y,∆Y ) is klt. We will not do this now though. There are two approaches,
the most direct is to do a complete resolution of singularities followed by some analysis. The
second is to use inversion of adjunction which allows one to relate the singularities of a
divisor with the singularities of a pair. We’ll cover more on this second topic later. �

1. Pairs in positive characteristic

We’ve already studied pairs in a certain context. Consider pairs of the form (R, φ) where
φ : F e

∗R→ R is an R-linear map. Our first goal will be to see that (R, φ) is very like a pair
(X,∆) where KX + ∆ is Q-Cartier.

Proposition 1.1. Suppose that X is a normal F -finite algebraic variety. Then there is a
surjective map from non-zero elements φ ∈ HomOX

(F e
∗OX ,OX) to Q-divisors ∆ such that

(pe− 1)(KX + ∆) ∼ 0. Furthermore, two elements φ1, φ2 induce the same divisor if and only
if there is a unit u ∈ H0(X,F e

∗OX) such that φ1(u · ) = φ2( ).
More generally, there is a bijection of sets between effective Q-divisors ∆ such that KX+∆

is Q-Cartier with index1 not divisible by p > 0 and certain equivalence relations on pairs
(L , φ : F e

∗L → OX) where L is a line bundle.
The equivalence relation described above is generated by equivalences of the following two

forms.

1The index of a Q-Cartier divisor D is the smallest positive integer n such that n(KX + ∆) is Cartier.
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• Consider two pairs (L1, φ1 : F e1L1 → OX) and (L2, φ2 : F e2L2 → OX) where
e1 = e2 = e. Then we declare these pairs equivalent if there is an isomorphism of
line bundles ψ : L1 → L2 and a commutative diagram:

F e
∗L1

F e
∗ψ

//

φ1 ##FFFFFFFF
Fe∗L2

φ2{{xxxxxxxx

OX
• Given a pair (L , φ : F e

∗L → OX), we also declare it to be equivalent to the pair

(L p(n−1)e+···+1, φn : F ne : L p(n−1)e+···+1 → · · · → L → OX).

First we do an example.

Example 1.2. Suppose R is a local ring and X = SpecR. Further suppose that R is Goren-
stein (or even such that (pe − 1)KX is Cartier), then HomR(F e

∗R,R) ∼= F e
∗R as we’ve seen.

The generating map ΦR ∈ HomR(F e
∗R,R) corresponds to the zero divisor by the description

above. Generally speaking, if ψ( ) = ΦR(x · )for x ∈ F e
∗R, then ∆ψ = 1

pe−1
divX(x). Even

without the Gorenstein hypothesis, viewing HomR(F e
∗R(d(pe−1)∆φe), R) ⊆ HomR(F e

∗R,R),
we have that φ generates HomR(F e

∗R(d(pe − 1)∆φe), R) as an F e
∗R-module.

Explicitly, consider R = k[x]. We know ΦR : F e
∗R → R is the map that sends xp

e−1 to 1
and the other relevant monomials to zero. Given a general element ψ : F e

∗R→ R defined by
the rule

xp
e−1 � // a0

xp
e−2 � // a1

. . . � // . . .

x1 � // ape−2

1
� // ape−1

Then ψ( ) = ΦR

(
(ap

e

0 + ap
e

1 x+ · · ·+ ape−2x
pe−2 + ape−1x

pe−1) ·
)

and so divψ = 1
pe−1

div(ap
e

0 +

ap
e

1 x+ · · ·+ape−2x
pe−2 +ape−1x

pe−1). One can do similarly easy computations for polynomial
rings in general.
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