F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 10/28-2010

KARL SCHWEDE

1. Characteristic p > 0 analogs of LC-centers and subadjunction continued

Using the same idea (Fedder's lemma), we have the following method for checking whether an ideal is a non-F-regular center.

Proposition 1.1. Suppose that S is a regular F-finite ring and that R = S/I. Suppose that $Q \in \text{Spec } S$ contains I. Then Q/I is a non-F-regular center of R if and only if $I^{[p^e]} : I \subseteq Q^{[p^e]} : Q$ for all $e \ge 0$. Furthermore, if R/I is Q-Gorenstein such that $(p^e - 1)K_R$ is Cartier, then one may check that single e > 0.

On the other hand if S is sufficiently local and if a \mathbb{Q} -divisor Δ on Spec R corresponds to a map $\phi : F_*^e R \to R$. Fix $d \in S \in I^{[p^e]} : I$ corresponding to ϕ . Then Q/I is a non-F-regular center of (R, Δ) if and only if $d \in Q^{[p^e]} : Q$.

Proof. The statements are local, so we may assume that S is local. But then the result follows immediately one recalls that $F_*^e(I^{[p^e]}:I)$ maps surjectively onto $\operatorname{Hom}_R(F_*^eR,R)$. \Box

Remark 1.2. For a log canonical pair (X, Δ) , the set of LC-centers satisfy many remarkable properties. For example, if the pair (X, Δ) is log canonical:

- Any union of such centers is seminormal (and in fact, Du Bois).
- Any intersection of such centers is a union of such centers.

F-pure centers satisfy the analogous results.

One can certainly ask if other natural properties of LC-centers hold for F-pure centers. The set of LC-centers are finite for a log canonical pair, so we can ask the following.

Theorem 1.3. [Sch09], [MK09] If (X, Δ) is sharply F-pure, then there are finitely many F-pure centers.

Proof. Choose ϕ such that $\Delta_{\phi} \geq \Delta$ and that $\phi(1) = 1$. Note, every center of sharp *F*-purity $Q \in \text{Spec } R$ for (R, Δ) satisfies $\phi(F_*^e Q) \subseteq Q$. We will show that there are finitely many prime ideals Q such that $\phi(F_*^e Q) \subseteq Q$. First note that if there are infinitely many such prime ideals, one can find a collection \mathfrak{Q} of infinitely many centers which all have the same height and whose closure (in the Zariski topology) is an irreducible subscheme of Spec R with generic point P (ie, P is the minimal associated prime of $\bigcap_{Q \in \mathfrak{Q}} Q$). Notice P must have smaller height than the elements of \mathfrak{Q} . Notice further that P also satisfies $\phi(F_*^e P) \subseteq P$ since it is the intersection of the elements of \mathfrak{Q} (in other words, P is a center of sharp F-purity for (R, Δ_{ϕ})).

By restricting to an open set, we may assume that R/P is normal (the elements of \mathfrak{Q} will still form a dense subset of V(P)). Then ϕ induces a divisor Δ_P on Spec R/P as above. But the set of elements in \mathfrak{Q} restrict to centers of sharp F-purity for $(R/P, \Delta_P)$ by F-adjunction. As noted above, $\{Q/P \mid Q \in \mathfrak{Q}\}$ is dense in Spec R/P and simultaneously $\{Q/P \mid Q \in \mathfrak{Q}\}$ is contained in the non-strongly *F*-regular locus of $(R/P, \Delta_P)$, which is closed and proper. This is a contradiction.

2. F-RATIONALITY VIA ALTERATIONS AND FINITE MAPS

In this section, we will show that F-rationality can also be described via alterations. First we prove the *equational lemma*, which lets us kill cohomology in characteristic p > 0 by passing to finite covers, the variant we give appeared recently in the work of Huneke-Lyubeznik, but the result has connections to the work of Hochster and others even in the 70s, as well as the work of Hochster-Huneke and Smith.

Theorem 2.1 (Equational-Lemma). [HL07], [HH92] Let R be a commutative Noetherian domain containing a field of characteristic p > 0. Let K be the fraction field of R and suppose that \overline{K} is the algebraic closure of K. Let I be an ideal of R and suppose that $\alpha \in H_I^i(R)$ is an element such that $\alpha, \alpha^p, \alpha^{p^2}, \ldots$ belong to a finitely generated R-submodule of $H_I^i(R)$. Then there exists an R-subalgebra R' of \overline{K} that is a finite R-module and such that the induced map $H^i(R) \to H^i(R')$ sends α to zero.

This proof is taken from [HL07]. Let A_t denote the submodule generated by $\alpha, \alpha^p, \ldots, \alpha^{p^t}$. By hypothesis, $A_0 \subseteq A_1 \subseteq A_2 \subseteq \ldots$ eventually stabilizes at A_s (note we may take s not divisible by p). Thus we have an equation:

$$g(T) = T^{p^s} - r_1 T^{p^{s-1}} - r_2 T^{p^{s-2}} - \dots - r_{s-1} T$$

where $r_i \in R$ and for which α is a root. It is a key point here that g is additive in T (because of the *p*th powers).

Suppose that x_1, \ldots, x_n generate I and consider the Cech complex

$$0 \longrightarrow C^{0}(M) \xrightarrow{d_{0}} C^{1}(M) \xrightarrow{d_{1}} C^{2}(M) \longrightarrow \cdots \xrightarrow{d_{n-1}} C^{n}(M) \longrightarrow 0$$

where $C^0(M) = M$ and $C^i(M) = \bigoplus_{j_1 \leq \cdots \leq j_i} M_{x_{j_1} \dots x_{j_i}}$ (we will set M = R and also equal to certain finite extensions of R).

Suppose that $\widetilde{\alpha} \in C^i(R)$ is a cycle that represents α . We know that $g(\widetilde{\alpha}) = d_{i-1}(\beta) \in d_{i-1}(C^{i-1}(R))$ since $g(\alpha) = 0$. Write

$$\beta = \bigoplus_{j_1 \le \dots \le j_{i-1}} \left(\frac{r_{j_1 \dots j_{i-1}}}{(x_{j_1} \dots x_{j_{i-1}})^e} \right)$$

for some (uniform) integer e.

For each tuple $j_1 \leq \cdots \leq j_i$, consider the equation

$$g(\frac{Z_{j_1 \le \dots \le j_{i-1}}}{(x_{j_1} \dots x_{j_{i-1}})^e}) - \frac{r_{j_1 \dots j_{i-1}}}{(x_{j_1} \dots x_{j_{i-1}})^e} = 0$$

in the variable $Z_{j_1 \leq \cdots \leq j_{i-1}}$. Clearing denominators gives us monic polynomials $h_{j_1 \leq \cdots \leq j_{i-1}}$ in the variables $Z_{j_1 \leq \cdots \leq j_{i-1}}$. Let $z_{j_1 \leq \cdots \leq j_{i-1}} \in \overline{K}$ be a root of this equation. Set R'' to be the finite extension of R generated by all the $z_{j_1 \leq \cdots \leq j_{i-1}}$.

Set

$$\widetilde{\widetilde{\alpha}} = \oplus \left(\frac{z_{j_1 \le \dots \le j_{i-1}}}{(x_{j_1} \dots x_{j_{i-1}})^e} \right) \in C^{i-1}(R'')$$

We also know that $C^{\bullet}(R)$ is a subcomplex of $C^{\bullet}(R'')$ and so we can identify $\widetilde{\alpha}$ and β with their natural images in $C^{\bullet}(R'')$. Thus $\widetilde{\alpha} \in C^{i}(R'')$ is a cycle representing the image of α under $H^{i}_{I}(R) \to H^{i}_{I}(R'')$. As is $\overline{\alpha} = \widetilde{\alpha} - d_{i-1}(\widetilde{\alpha})$ (we just subtracted a boundary, which does not change the cohomology class). Now, $g(\widetilde{\alpha}) = \beta$ and also $g(\widetilde{\alpha}) = d_{i-1}(\beta)$, so that

$$g(\bar{\alpha}) = g(\tilde{\alpha} - d_{i-1}(\tilde{\widetilde{\alpha}})) = g(\tilde{\alpha}) - g(d_{i-1}(\tilde{\widetilde{\alpha}})) = g(\tilde{\alpha}) - d_{i-1}(g(\tilde{\widetilde{\alpha}})) = d_{i-1}(\beta) - d_{i-1}(\beta) = 0.$$

Write

 $\bar{\alpha} = \bigoplus \rho_{j_1 \leq \cdots \leq j_i}$ with $\rho_{j_1 \leq \cdots \leq j_i} \in R''_{j_1 \dots j_i}$.

We know that $g(\rho_{j_1 \leq \cdots \leq j_i}) = 0$ individually so that $\rho_{j_1 \leq \cdots \leq j_i}$ is integral over R. Set R' to be R'' adjoin the $\rho_{j_1 \leq \cdots \leq j_i}$ (this is contained in the normalization of R'').

By hypothesis, the image of α in $H_I^i(R')$ is represented by $\bar{\alpha} = \bigoplus \rho_{j_1 \leq \cdots \leq j_i}$. We need to show that this is a boundary. However, there is an exact subcomplex of $C^{\bullet}(R')$ which is simply R' in each term, $\bar{\alpha}$ is certainly in this subcomplex and thus it is a boundary as desired. \Box

References

- [HH92] M. HOCHSTER AND C. HUNEKE: Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. 1147957 (92m:13023)
- [HL07] C. HUNEKE AND G. LYUBEZNIK: Absolute integral closure in positive characteristic, Adv. Math. 210 (2007), no. 2, 498–504. 2303230 (2008d:13005)
- [MK09] V. B. MEHTA AND S. KUMAR: Finiteness of the number of compatibly-split subvarieties, arXiv:0901.2098, to appear in Int. Math. Res. Not.
- [Sch09] K. SCHWEDE: F-adjunction, Algebra Number Theory 3 (2009), no. 8, 907–950.