F-SINGULARITIES AND FROBENIUS SPLITTING NOTES 10/19-2010

KARL SCHWEDE

1. F-Singularities and birational maps

Our goal in this section is to relate F-singularities and test ideals with \log canonical and log terminal singularities as well as multiplier ideals. In order to do this, we need to explain how maps $\phi: F_{*}^{e} R \rightarrow R$ behave under birational maps.

Proposition 1.1. Suppose that $\pi: \widetilde{X} \rightarrow X$ is a proper birational map and $\phi \in \operatorname{Hom}_{R}\left(F_{*}^{e} R, R\right)$. Write

$$
K_{\tilde{X}}-\sum a_{i} E_{i}=f^{*}\left(K_{R}+\Delta_{\phi}\right)
$$

Then ϕ induces a map $\widetilde{\phi}: F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right) \sum a_{i} E_{i}\right) \rightarrow \mathcal{O}_{\tilde{X}}$ which agrees with ϕ where π is an isomorphism. Finally, it induces a map (which we also call $\widetilde{\phi}$)

$$
\widetilde{\phi}: F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left\lceil\sum a_{i} E_{i}\right\rceil\right) \rightarrow \mathcal{O}_{\tilde{X}}\left(\left\lceil\sum a_{i} E_{i}\right\rceil\right)
$$

Proof. Throughout, we remove the singular locus of \widetilde{X} if necessary so that it is regular, and work with divisors on this locus. This is harmless though since we are looking at maps between reflexive modules.

By assumption ϕ generates $\operatorname{Hom}_{R}\left(F_{*}^{e} R\left(\left\lceil\left(p^{e}-1\right) \Delta_{\phi}\right\rceil\right), R\right) \cong F_{*}^{e} R\left(\left(1-p^{e}\right)\left(K_{R}+\Delta_{\phi}\right)\right) \cong$ $F_{*}^{e} R$. Thus we have a section $d \in f^{*} R\left(\left(1-p^{e}\right)\left(K_{R}+\Delta_{\phi}\right)\right) \cong \mathcal{O}_{\tilde{X}}$ corresponding to ϕ, and furthermore this section generates. So that we obtain a section $d \in \Gamma\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right)\left(K_{\tilde{X}}-\right.\right.\right.$ $\left.\left.\sum a_{i} E_{i}\right)\right)$ which generates as an $\mathcal{O}_{\tilde{X}}$-module. However, $F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right)\left(K_{\tilde{X}}-\sum a_{i} E_{i}\right)\right)=$ $\mathscr{H} \operatorname{om}_{\mathcal{O}_{X}}\left(F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right)\left(\sum a_{i} E_{i}\right)\right), \mathcal{O}_{\tilde{X}}\right)$ and we obtain our first statement easily.

For the second statement, consider $\widetilde{\phi}: F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right) \sum a_{i} E_{i}\right) \rightarrow \mathcal{O}_{\tilde{X}}$. Twisting by $\mathcal{O}_{\tilde{X}}\left(\left\lceil\sum a_{i} E_{i}\right\rceil\right)$ gives us a map

$$
\widetilde{\phi}: F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right) \sum a_{i} E_{i}+p^{e}\left\lceil\sum a_{i} E_{i}\right\rceil\right) \rightarrow \mathcal{O}_{\tilde{X}}\left(\left\lceil\sum a_{i} E_{i}\right\rceil\right)
$$

However, $\left(1-p^{e}\right) \sum a_{i} E_{i}+p^{e}\left\lceil\sum a_{i} E_{i}\right\rceil \geq\left\lceil\left(1-p^{e}\right) \sum a_{i} E_{i}+p^{e} \sum a_{i} E_{i}\right\rceil=\left\lceil\sum a_{i} E_{i}\right\rceil$ which gives the desired map via composition with the inclusion.

Remark 1.2. Restrict the above map $\widetilde{\phi}$ to an E_{i} such that $a_{i} \leq 0$. Localizing at the generic point of that E_{i} gives us a "generating" map from $\left.\mathcal{O}_{\tilde{X}, E_{i}}\left(1-p^{e}\right) a_{i} E_{i}\right) \rightarrow \mathcal{O}_{\tilde{X}, E_{i}}$. In other words, if we pay close attention to our embedding into the fraction field, the divisor associated to $\widetilde{\phi}$ corresponds to $\sum-a_{i} E_{i}$ (at least for those E_{i} with non-positive a_{i}). As we've previously alluded to, one can work with anti-effective divisors too, in that case $\widetilde{\phi}$ corresponds to $-\sum a_{i} E_{i}$.

Remark 1.3. In fact, for any effective divisor E on $\widetilde{X}, \pi_{*} \mathcal{O}_{\tilde{X}}\left(\left\lceil\sum a_{i} E_{i}\right\rceil+E\right)$ is also stabilized by ϕ.

Remark 1.4. This immediately implies the inclusion $\tau_{b}\left(R, \Delta_{\phi}\right) \subseteq \mathcal{J}\left(R, \Delta_{\phi}\right)$ assuming the existence of resolutions of singularities in characteristic $p>0$. In fact, a slight modification of this implies that $\tau_{b}\left(R, \Delta, \mathfrak{a}^{t}\right) \subseteq \mathcal{J}\left(R, \Delta, \mathfrak{a}^{t}\right)$ under the assumption that $K_{X}+\Delta$ is \mathbb{Q} Gorenstein. To see this, assume that R is local notice that for every $\psi \in M_{\Delta, \mathfrak{a}}^{e}$, we have that $\Delta_{\psi}=\Delta_{\psi^{\prime}}+\frac{1}{p^{e}-1} \operatorname{div}(f)$ where $\Delta_{\psi^{\prime}} \geq \Delta$ and $f \in \mathfrak{a}^{\left[t\left(p^{e}-1\right)\right\rceil}$. It easily follows from the method of the proof and Remark 1.3 above that $\pi_{*} \mathcal{O}_{\tilde{X}}\left(\left\lceil K_{\tilde{X}}-\pi^{*}\left(K_{X}+\Delta\right)-t G\right\rceil\right)$ is ψ-stable.

We'd now like to relate F-pure and \log canonical singularities.
Theorem 1.5. HW02 Suppose that $\left(X, \Delta, \mathfrak{a}^{t}\right)$ has F-pure singularities and that ${\underset{\widetilde{X}}{X}}+\Delta$ is \mathbb{Q}-Gorenstein. Further suppose that $\pi: \widetilde{X} \rightarrow X$ is a proper birational map with \widetilde{X} normal and $\mathfrak{a} \cdot \mathcal{O}_{\tilde{X}}=\mathcal{O}_{\tilde{X}}(-G)$. Then if we write

$$
K_{\tilde{X}}-\pi^{*}\left(K_{X}+\Delta\right)-t G=\sum a_{i} E_{i}
$$

we have that each $a_{i} \geq-1$.
Proof. Without loss of generality, we may assume that X is the spectrum of a local ring. We choose $\psi \in M_{\Delta, a^{t}}^{e}$ which induces a surjective map $\psi: F_{*}^{e} R \rightarrow R$. We notice that if we write

$$
K_{\tilde{X}}-\pi^{*}\left(K_{X}+\Delta_{\psi}\right)=\sum b_{i} E_{i}
$$

then all of the $b_{i} \leq a_{i}$ and so it suffices to prove the statement for the b_{i}.
Suppose then that one of the $b_{i}<-1$. Localize at the generic point of the associated E_{i}. This gives us a DVR $\mathcal{O}_{\tilde{X}, E_{i}}$ and a map $\tilde{\psi}: F_{*}^{e} \mathcal{O}_{\tilde{X}, E_{i}} \rightarrow \mathcal{O}_{\tilde{X}, E_{i}}$ that is also surjective. Furthermore, the divisor corresponding to $\widetilde{\psi}$ is $-b_{i} E_{i}$. Therefore, our result follows from the following lemma:

Lemma 1.6. If (S, Δ) is F-pure with Δ effective, then $\lceil\Delta\rceil$ is reduced (in other words, the coefficients of Δ are less than or equal to 1).
Proof. Without loss of generality we may assume that S is a DVR with parameter s. Write $\Delta=\lambda \operatorname{div}(s)$. Suppose that $\lambda>1$, we will show that (S, Δ) is not F-pure. Let Ψ_{S} be the generating map of $\operatorname{Hom}_{S}\left(F_{*}^{e} S, S\right)$. Then for any $\phi \in M_{\Delta}^{e}$, we have $\phi\left(_\right)=\Phi_{S}\left(x \cdot _\right)$where $x=u s^{m}$ and $m \geq\left\lceil\left(p^{e}-1\right) \lambda\right\rceil \geq p^{e}$. But then clearly $\phi(z) \subseteq(s)$ for all $z \in F_{*}^{e} S$ proving that no ϕ can be surjective.

Corollary 1.7. MvdK92 Suppose that X is a normal variety and $\pi: \widetilde{X} \rightarrow X$ is a projective birational map with normal \widetilde{X}. If there exists a map $\phi: F_{*}^{e} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ such that
(a) $\left(X, \Delta_{\phi}\right)=(X, \phi)$ is strongly F-regular.
(b) If we write $K_{\tilde{X}}-\pi^{*}\left(K_{X}+\Delta\right)=\sum a_{i} E_{i}$ then all a_{i} satisfy $-1<a_{i} \leq 0$ (note the lower bound follows from (a)).
Then $R^{i} \pi_{*} \omega_{\tilde{X}}=0$ for all $i>0$. In fact, $R^{i} \pi_{*} h^{j}\left(\omega_{\tilde{X}}^{\bullet}\right)=0$ for all j.
Proof. The statement is local so we may assume that X is the spectrum of a local ring R. Fix an anti-effective relatively π-ample Weil divisor E on \widetilde{X} and choose an element $d \in R$ such that $\operatorname{div}_{\tilde{X}}(d) \geq-E$. By the first hypothesis, there exists an $n \gg 0$ such that $\phi^{n}\left(F_{*}^{n e} d R\right)=R$ say $\phi^{n}\left(F_{*}^{n e} d c\right)=1$. Consider the map $\psi: F_{*}^{n e} R \rightarrow R$ defined by $\phi\left(__{-}\right)=\phi\left(c d \cdot _\right)$, noting
that $\Delta_{\psi} \geq \Delta_{\phi}$. Write $K_{\tilde{X}}-\pi^{*}\left(K_{X}+\Delta\right)=\sum b_{i} E_{i}$ and observe that $-1 \leq b_{i}<0$ (actually, $\left.b_{i}=a_{i}-\frac{1}{p^{n e}-1} \operatorname{div}_{E_{i}}(c d)\right)$. We also induce a map $\widetilde{\psi}: F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{n e}\right) \sum b_{i} E_{i}\right) \rightarrow \mathcal{O}_{\tilde{X}}$ which sends 1 to 1 . All of the a_{i} and b_{i} are non-positive, and so we have an inclusion $\mathcal{O}_{\tilde{X}} \subseteq \mathcal{O}_{\tilde{X}}\left(\left(1-p^{n e}\right) \sum b_{i} E_{i}\right)$. In fact, by construction we have that

$$
\mathcal{O}_{\tilde{X}} \subseteq \mathcal{O}_{\tilde{X}}(-E) \subseteq \mathcal{O}_{\tilde{X}}\left(\operatorname{div}_{\tilde{X}}(d)\right) \subseteq \mathcal{O}_{\tilde{X}}\left(\left(1-p^{n e}\right) \sum b_{i} E_{i}\right)
$$

In particular, $\mathcal{O}_{\tilde{X}}$ is Frobenius split, and we can express the splitting as the isomorphism

$$
\mathcal{O}_{\tilde{X}} \rightarrow F_{*}^{n e} \mathcal{O}_{\tilde{X}} \rightarrow F_{*}^{n e} \mathcal{O}_{\tilde{X}}(-E) \rightarrow \mathcal{O}_{\tilde{X}}
$$

Iterating this isomorphism m-times, we obtain the isomorphism

$$
\mathcal{O}_{\tilde{X}} \rightarrow F_{*}^{m n e} \mathcal{O}_{\tilde{X}} \rightarrow F_{*}^{m n e} \mathcal{O}_{\tilde{X}}\left(-\left(1+p+\cdots+p^{m-1}\right) E\right) \rightarrow \mathcal{O}_{\tilde{X}}
$$

The idea will be we can use Frobenius to amplify the amplitude of E.
Dualizing, we obtain that
also an isomorphism. Taking cohomology gives us an isomorphism

$$
h^{j}\left(\omega_{\tilde{X}}^{\dot{X}}\right) \leftarrow F_{*}^{m n e} h^{j}\left(\omega_{\tilde{X}}^{\dot{X}}\right) \leftarrow F_{*}^{m n e} h^{j}\left(\omega_{\tilde{X}}^{\dot{X}}\right)\left(\left(1+p+\cdots+p^{m-1}\right) E\right) \leftarrow h^{j}\left(\omega_{\dot{\tilde{X}}}^{\dot{\tilde{}}}\right) .
$$

Applying $R^{i} \pi_{*}$ gives us the desired conclusion since E is anti-ample and we may take $m \gg$ 0 .

We now relate the multiplier ideal and the test ideal.
Theorem 1.8. Smi00, Har05], HY03], Tak04 Suppose that $\left(X_{0}=\operatorname{Spec} R_{0}, \Delta_{0}, \mathfrak{a}_{0}^{t}\right)$ is a triple in characteristic zero such that $K_{X_{0}}+\Delta_{0}$ is \mathbb{Q}-Cartier. Then for all $p \gg 0$, $\left(\mathcal{J}\left(X, \Delta, \mathfrak{a}^{t}\right)\right)_{p}=\tau\left(X_{p}, \Delta_{p}, \mathfrak{a}_{p}^{t}\right)$.
Proof. We will be doing reduction to characteristic $p>0$ here. We will not write the subscript p (although will write the subscript 0). We first recall Hara's lemma on surjectivity of the dual Frobenius map (which we still haven't proved).
Lemma 1.9. Har98 Suppose that R_{0} is a ring of characteristic zero, $\pi: \widetilde{X}_{0} \rightarrow \operatorname{Spec} R_{0}$ is a log resolution of singularities, D_{0} is a π-ample \mathbb{Q}-divisor with simple normal crossings support. We reduce this setup to characteristic $p \gg 0$. Then the natural map

$$
\left(F^{e}\right)^{\vee}=\Phi_{\tilde{X}}: F_{*}^{e} \omega_{\tilde{X}}\left(\left\lceil p^{e} D\right\rceil\right) \rightarrow \omega_{\tilde{X}_{p}}(\lceil D\rceil)
$$

surjects.
Fixing a \log resolution \widetilde{X}_{0} of X_{0} we write $\mathfrak{a}_{0} \cdot \mathcal{O}_{\tilde{X}_{0}}=\mathcal{O}_{\tilde{X}_{0}}\left(-G_{0}\right)$ and reduce this setup to characteristic $p>0$. We choose $c_{0} \in \mathcal{O}_{X_{0}}$ an element whose power is going to be a test element in characteristic $p \gg 0$, and then further multiply it by the product of the generators of the a_{i}. We choose a relatively ample divisor exceptional E_{0} in characteristic zero such that $\left\lceil-\pi^{*}\left(K_{X_{0}}+\Delta_{0}\right)-t G_{0}+E_{0}-\varepsilon \operatorname{div}_{\tilde{X}_{0}}\left(c_{0}\right)\right\rceil=\left\lceil-\pi^{*}\left(K_{X_{0}}+\Delta_{0}\right)-t G_{0}+E_{0}\right\rceil$ and also reduce it to characteristic $p>0$. Our D_{0} is going to be $E_{0}-\pi\left(K_{X_{0}}+\Delta_{0}\right)-t G_{0}-\varepsilon \operatorname{div}_{\tilde{X}_{0}}\left(c_{0}\right)$.

After reduction to characteristic $p \gg 0$, we may assume that $K_{X}+\Delta_{X}$ is \mathbb{Q}-Cartier with index not divisible by p. Therefore, we may choose a $\phi: F_{*}^{e} R \rightarrow R$ corresponding to Δ_{X} as before. As we've noted, this induces a map
$\widetilde{\phi}: F_{*}^{e} \omega_{\tilde{X}}\left(\left\lceil-\pi^{*}\left(K_{X}+\Delta\right)-t p^{e} G+p^{e} E+p^{e} \varepsilon \operatorname{div}_{\tilde{X}}(c)\right\rceil\right) \rightarrow \omega_{\tilde{X}}\left(\left\lceil-\pi^{*}\left(K_{X}+\Delta\right)-t G+E+\varepsilon \operatorname{div}_{\tilde{X}}(c)\right\rceil\right)$

We claim that this map can be identified with:

$$
\left(F^{e}\right)^{\vee}: F_{*}^{e} \omega_{\tilde{X}}\left(\left\lceil-p^{e} \pi^{*}\left(K_{X}+\Delta\right)-t p^{e} G+p^{e} E+p^{e} \varepsilon \operatorname{div}_{\tilde{X}}(c)\right\rceil\right) \rightarrow \omega_{\tilde{X}}\left(\left\lceil-\pi^{*}\left(K_{X}+\Delta\right)-t G+E+\varepsilon \operatorname{div}_{\tilde{X}}(c)\right\rceil\right)
$$

Given this claim, $\widetilde{\phi}$ surjects. Now argue as we did for rational singularities. For $e \gg 0, \pi_{*}$ of the domain of $\widetilde{\phi}$ is contained inside

$$
F_{*}^{e} c^{n} \overline{\mathfrak{a}^{\left\lceil t\left(p^{e}-1\right)\right\rceil}}
$$

where c^{n-1} is a test element. The problem is the integral closure. We need $c \overline{\mathfrak{a}^{\left\lceil t\left(p^{e}-1\right)\right\rceil}} \subseteq$ $\mathfrak{a}^{\left[t\left(p^{e}-1\right)\right\rceil}$. But c factors as both a test element d of R as well as the product of generators of \mathfrak{a}. Therefore, $c \overline{\mathfrak{a}^{\left\lceil t\left(p^{e}-1\right)\right\rceil}} \subseteq d \overline{d \mathfrak{a}^{\left\lceil t\left(p^{e}-1\right)\right\rceil+r}}$ where r is the number of generators of R. The tight-closure Briancon-Skoda theorem (which we may prove a little later, []) tells us that this is contained in $\mathfrak{a}^{\left[t\left(p^{e}-1\right)\right\rceil}$ as desired. Then the sum of images of these maps (for $e \gg 0$) is the test ideal.

To prove the claim, we argue as follows. Notice first that $\left(F^{e}\right)^{\vee}: F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right) K_{\tilde{X}}\right) \rightarrow \mathcal{O}_{\tilde{X}}$ is (locally) the generating map as is $\widetilde{\phi}: F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(p^{e}-1\right) \pi^{*}\left(K_{X}+\Delta\right)-\left(p^{e}-1\right) K_{\tilde{X}}\right) \rightarrow \mathcal{O}_{\tilde{X}}$. But $\mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}+\left(p^{e}-1\right) \pi^{*}\left(K_{X}+\Delta\right)\right) \cong F_{*}^{e} \mathcal{O}_{\tilde{X}}\left(\left(1-p^{e}\right) K_{\tilde{X}}\right)$ so the two maps are actually the same (up to multiplication by a unit). From there, the more complicated maps above were then obtained by twisting by the same \mathbb{Q}-divisors, and then doing the same inclusions.

Corollary 1.10. A triple $\left(X, \Delta, \mathfrak{a}^{t}\right)$ in characteristic zero is Kawamata log terminal if and only if it is of open strongly F-regular type.

Remark 1.11. The following diagram explains the singularities we understand and the implications between them.

It is an open question whether Du Bois singularities have dense F-injective type or whether log canonical singularities have dense F-pure type.

References

[Har98] N. HARA: A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981-996. MR1646049 (99h:13005)
[Har05] N. Hara: A characteristic p analog of multiplier ideals and applications, Comm. Algebra 33 (2005), no. 10, 3375-3388. MR2175438 (2006f:13006)
[HW02] N. Hara and K.-I. Watanabe: F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom. 11 (2002), no. 2, 363-392. MR1874118 (2002k:13009)
[HY03] N. Hara and K.-I. Yoshida: A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3143-3174 (electronic). MR1974679 (2004i:13003)
[MvdK92] V. B. Mehta and W. van der Kallen: On a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristic p, Invent. Math. 108 (1992), no. 1, 11-13. 1156382 (93a:14017)
[Smi00] K. E. Smith: The multiplier ideal is a universal test ideal, Comm. Algebra 28 (2000), no. 12, 5915-5929, Special issue in honor of Robin Hartshorne. MR1808611 (2002d:13008)
[Tak04] S. TAKAGI: An interpretation of multiplier ideals via tight closure, J. Algebraic Geom. 13 (2004), no. 2, 393-415. MR2047704 (2005c:13002)

