F-SINGULARITIES AND FROBENIUS SPLITTING NOTES EXERCISE SET #1

KARL SCHWEDE

- (1) Prove that R is F-split if and only if it is F^e -split (for some e > 0).
- (2) Let R be an F-finite ring. Show that if for every maximal ideal $\mathfrak{m} \in \operatorname{Spec} R$, $R_{\mathfrak{m}}$ is F-split, then R is also F-split. *Hint:* Consider the evaluation-at-1 map $\operatorname{Hom}_R(F_*R, R) \to R$.
- (3) Suppose S is an F-finite regular ring. If R = S/I is Frobenius split, show that S is also compatibly Frobenius split with I.
 - *Hint:* First do the case when S is local, then proceed as in (1).
- (4) Are the following rings semi-normal and/or weakly normal? Are they *F*-split?
 - (a) $\mathbb{F}_{p}(x^{p})[y, xy, x^{2}y, \dots, x^{p-1}y]$
 - (b) $\mathbb{F}_p[u, v, y, z]/(uv, uz, z(v-y^2))$ (*Hint:* It might help to study what the irreducible components of the Spec of this ring are).
 - (c) Any union of coordinate linear spaces through the origin in \mathbb{A}^n .
 - (d) $\mathbb{F}_p[x, y, z, w]/(x^3 + y^3 + z^3 + w^3)$ (check this for p = 2, 3, 5, 7, 11).
- (5) If X is F-split, show that every irreducible component of X is also F-split.
- (6) Suppose that R = S/I is a Gorenstein ring and S is an F-finite regular local ring. Show that $I^{[p^e]} : I = I^{[p^e]} + (f)$ for some element $f \in S$. More generally, show that the same conclusion holds if R is normal and $(p^e - 1)K_{\text{Spec }R}$ is Cartier.
- (7) Suppose that R = S/I is a complete intersection where S is an F-finite regular local ring (in other words, $I = (x_1, \ldots, x_n)$ is generated by a regular sequence). Show that $I^{[p^e]} : I = I^{[p^e]} + (x_1^{p^e-1} \cdots x_n^{p^e-1})$. State an easy to check criteria for R to be F-split.
- (8) If $K \subseteq L$ is a finite separable extension of *F*-finite fields, show that every *K*-linear map $\phi : F^e_*K \to K$ extends to an *L*-linear map $\bar{\phi} : F^e_*L \to L$. *Hint:* Show first that any basis for F^e_*K over *K* is also a basis for F^e_*L over *L*.
- (9) Suppose that $S = k[x_1, \ldots, x_n]$ and that $\Phi : F_*S \to S$ is the generating map (as discussed in class, it sends $x_1^{p-1} \ldots x_n^{p-1}$ to 1 and the other monomials to zero). Suppose that $\phi : F_*S \to S$ is any other S-linear map with $\phi(_) = \Phi(z \cdot _)$ for some $z \in F_*S$. Show that ϕ is compatible with R = S/(f) if and only if f^{p-1} divides z.