The TestIdeals package for Macaulay2

Erin Bela, Alberto F. Boix, Juliette Bruce, Drew Ellingson, Daniel Hernández, Zhibek Kadyrsizova, Mordechai Katzman, Sara Malec, Matthew Mastroeni, Maral Mostafazadehfard, Marcus Robinson, Karl Schwede¹, Daniel Smolkin, Pedro Teixeira, Emily Witt

> ¹Department of Mathematics University of Utah

AMS Sectional Meeting, University of Hawaii at Manoa 2019

History

- Consider rings R of characteristic p > 0.
- No resolution of singularities (in general).
- Kunz proved:

Theorem (Kunz)

R is regular if and only if Frobenius is flat.

How flat is Frobenius?

Definition (Hochster-Roberts, Mehta-Ramanathan)

R is *F*-pure if and only if $R \to R^{1/p^e}$ splits.

F-pure is analogous to (semi)log canonical singularities.
 [Hara-Watanabe]

Fedder

Checking *F*-purity can be pretty easy.

• Fedder's Criterion. R = S/I, S is polynomial.

Theorem (Fedder)

R is F-pure at \mathfrak{m} if and only if $I^{[p]}: I \not\subseteq \mathfrak{m}^{[p]}$.

- If I = (f), then $I^{[p]} : I = (f^{p-1})$. (BOARD)
- For example.

```
i5 : S = ZZ/7[x,y,z];

i6 : f = x^3 + y^3 + z^3;

i8 : isSubset(ideal(f^6), ideal(x^7, y^7, z^7))

o8 = false
```

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds.

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds.

- F-pure
 - Analog of SLC.
- F-regular
 - Analog of KLT.
- F-rational
 - Analog of rational.
- F-injective
 - Analog of Du Bois.
- Test ideals
 - Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
 - Analogs of log canonical thresholds.

Fedder, part 2

Fedder's criterion works because maps

$$\phi_R: R^{1/p^e} \to R$$

come from maps

$$\phi_{\mathcal{S}}: \mathcal{S}^{1/p^e} o \mathcal{S}$$

such that $\phi_{\mathcal{S}}(I^{1/p^e}) \subseteq I$.

In fact,

$$I^{[p^e]}: I \cong \{\phi \in \mathsf{Hom}_{\mathcal{S}}(\mathcal{S}^{1/p^e}, \mathcal{S}) \mid \phi(I^{1/p^e}) \subseteq I\}.$$

Translates questions on R to polynomial ring S.

Frobenius trace

One more big tool.

- There exists $\Phi: S^{1/p^e} \to S$.
- $\Phi\left(x_1^{\frac{\rho^e-1}{\rho^e}}\cdots x_n^{\frac{\rho^e-1}{\rho^e}}\right)=1$
- Other monomials to 0.
- Φ generates $\operatorname{Hom}_S(S^{1/p^e}, S)$.
- Φ is Grothendieck dual to Frobenius.
- $\Phi(J^{1/p^e}) \subseteq I$ if and only if

$$I^{[p^e]} \subseteq J$$
.

Theorem (Fedder restated)

$$\Phi((I^{[p^e]}:I)^{1/p^e}) \equiv_I \operatorname{Image}(\operatorname{Hom}_R(R^{1/p^e},R) \xrightarrow{@1} R)$$

defines locus where R = S/I is not F-pure.

Implementation

We compute some Macaulay2 examples. $\Phi(J)$ is called the *Frobenius root of J*.

```
i12 : I = ideal(x^3 + y^3 + z^3);
i13 : frobeniusRoot(1, I^7 : I)
o13 = ideal 1
i14 : isFPure(S/I)
o14 = t.rue
i15 : J = ideal(x^4+y^4+z^4);
i16 : frobeniusRoot(1, J^7 : J)
o16 = ideal (z , y*z, x*z, y , x*y, x )
i19 : isFPure(S/J)
o19 = false
```

More examples

```
i20 : T = ZZ/5[a,b,c,d,e];
i21 : B = ZZ/5[x,y];
i22 : f = map(B, T, \{x^4, x^3*y, x^2*y^2, x*y^3, y^4\}
                4 3 2 2 3 4
o22 = map (B, T, \{x, xy, xy, x*y, y\})
o22 : RingMap B <--- T
i23 : I = ker f
o23 = ideal (d - c*e, c*d - b*e, b*d - a*e, c - a*e
o23 : Ideal of T
i24 : isFPure(T/I)
024 = true
```

F-regularity and test ideals

Analog of KLT.

Definition

R is *strongly F-regular* if for every (interesting¹) $c \in R$, there is some e and $\phi: R^{1/p^e} \to R$ so that $\phi(c^{1/p^e}) = 1$.

If translated by Fedder's methods,

Theorem

R = S/I is strongly F-regular if and only if

$$I + \Phi((c(I^{[p^e]}:I))^{1/p^e}) = S.$$

F-regularity checking

```
i3 : S = ZZ/7[x,y,z];
i4 : R = S/ideal(x^2-y*z)
i5 : isFRegular(R);
o5 = true
i20 : A = ZZ/7[x,y,z]/(y^2*z - x*(x-z)*(x+z));
i21 : C = ZZ/7[a,b,c,d,e,f];
i22 : g = map(A, C, {x^2, x*y, x*z, y^2, y*z, z^2})
i23 : I = ker g;
i26 : isFRegular(C/I);
o26 = false
```

- We can only show that Q-Gorenstein rings are not F-regular.
- The QGorensteinIndex=>infinity option can prove a non-Q-Gorenstein ring is F-regular.

F-regularity of pairs

```
i3 : S = ZZ/7[x,y,z];
i4 : R = S/ideal(x^2-y*z)
i6 : h = y;
i7 : isFRegular(1/2, y)
o7 = false
i8 : isFRegular(1/3, y)
o8 = true
```

- The pair $(R, h^{1/2})$ is not F-regular but $(R, h^{1/3})$ is.
- The FThresholds package can even compute F-pure thresholds.

F-rationality

- Analog of rational singularities.
- Implies (pseudo-)rational singularities in a fixed characteristic.
 - $\mathcal{O}_X \simeq R\pi_*\mathcal{O}_Y$
- Here's our definition:

Definition

R has F-rational singularities if it is

- Cohen-Macaulay
- $(c^{1/p^e} \cdot \omega_{R^{1/p^e}}) \xrightarrow{F^e \text{dual}} \omega_R$ surjects.

F-rational examples

Here is an example of an F-rational (but not F-regular) ring.

Appeared in work of Anurag Singh (deform *F*-regularity)

Characteristic zero applications

Characteristic p > 0 conclusions imply results in characteristic zero.

Theorem (Ma-•)

Suppose R is a ring of mixed characteristic finite type over \mathbb{Z} . Suppose $p \in \mathbb{Z}$ is a regular element and $Q \subseteq R$ is a prime not containing any nonzero prime of \mathbb{Z} so that $(p) + Q \neq R$.

If R/pR is F-rational, then $R_Q = R_Q \otimes \mathbb{Q}$ has rational singularities.

- Analogous statement for log terminal/F-regular singularities, if the Q-Gorenstein not divisible by p.
- Not known for log canonical/F-pure singularities (need mixed char inversion of adjunction).

Test ideals

We can compute test ideals too. Including of pairs.

- In a Q-Gorenstein ring.
- $\tau(R, f^t)$ equals sum of images of maps

$$\phi: (cf^{\lceil t(p^e-1) \rceil}R)^{1/p^e} \to R.$$

c as before. [Hara-Takagi]

- We use it to check F-regularity.
 - (R, f^t) is F-regular if and only if $\tau(R, f^t) = R$.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

Example

- We can compute $\tau(R, f^{t-\epsilon})$, which is used to compute jumping numbers and F-pure thresholds.
- Needs HSLGModule function.

Thanks!

You can go to:

```
http://www.math.utah.edu/~schwede/M2.html
```

to try it yourself!

It's also built into the latest version of Macaulay2.