Name ______

Math 217 Winter, 2007 Midterm 2

Problem 1	Possible Points 10	Actual Points
2	10	
3	10	
TRUE/FALSE	20	
Total	50	

In all the problems (with the exception of the TRUE/FALSE), indicate how you arrived at your answer. The answer alone will get at best partial credit.

Problem 1 (10 points)

a) Compute the determinant of
$$A = \begin{bmatrix} 5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & 6 \end{bmatrix}$$
.

(Hint: although you should still justify your answers for parts b-e, you shouldn't have to do any further calculations.)

- b) Is A invertible?
- c) What is the dimension of Nul(A)?
- d) What is the rank of A?
- e) Are the columns of A linearly independent or dependent?

Problem 2 (10 points) Let $A = \begin{bmatrix} 1 & -3 & 0 & 2 & 4 \\ -2 & 6 & -3 & -1 & -11 \\ 1 & -3 & 2 & 0 & 6 \end{bmatrix}$. a) Find bases for Nul(A), Col(A), and Row(A). b) Suppose $V = \text{Span}\{p_1(t), p_2(t), p_3(t)\}$, where $r_2(t) = 1 - 2t + 2t^3 + 4t^4$

$$p_1(t) = 1 - 3t + 2t^3 + 4t^4,$$

$$p_2(t) = -2 + 6t - 3t^2 - t^3 - 11t^4,$$

$$p_3(t) = 1 - 3t + 2t^2 + 6t^4.$$

Is V a subspace of \mathbb{P}_4 ? If so, what is its dimension?

Problem 3 (10 points) Suppose $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, \ldots, \mathbf{c}_n}$ are bases for a vector space V. Show that ${[\mathbf{b}_1]_{\mathcal{C}}, \ldots, [\mathbf{b}_n]_{\mathcal{C}}}$ is a basis for \mathbb{R}^n . (**Hint 1**: You are welcome to apply any of the theorems about bases of finite-dimensional vector spaces here.) (**Hint 2**: (unrelated to bint 1) Pacell that $[\mathbf{b}_1]_{\mathcal{C}}$ is a basis for \mathbb{R}^n .

(**Hint 2**: (unrelated to hint 1) Recall that $[\mathbf{b}_1]_{\mathcal{C}}, \ldots, [\mathbf{b}_n]_{\mathcal{C}}$ are the columns of the change-of-basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.)

TRUE/FALSE (20 points)

Below are ten assertions. For each, circle either T or F to indicate whether you believe the assertion is always TRUE or sometimes FALSE. There is no need to justify your response.

- T F A vector space spanned by an infinite set is infinite-dimensional.
- T F Let M_n be the vector space of all $n \times n$ matrices (you may want to convince yourself this is a vector space). The transformation $T: M_n \to \mathbb{R}$ defined by $T(A) = \det(A)$ is a linear transformation.
- T F The parallelogram defined by vectors \mathbf{v}_1 and \mathbf{v}_2 has area det($[\mathbf{v}_1 \ \mathbf{v}_2]$).
- T F In the L-U decomposition of a matrix A, the matrix L is invertible.
- T F Let V be the vector space of differentiable functions $f : \mathbb{R} \to \mathbb{R}$. We showed that differentiation is a linear transformation, $D : V \to V$, D(f) = f'. Then D^{-1} is the linear transformation given by integration.

T F The set of all vectors of the form
$$\begin{bmatrix} a-3b\\ 2(a+b)\\ b-a\\ 4b \end{bmatrix}$$
, where a, b in \mathbb{R} , is a

plane in \mathbb{R}^4 .

T F Let $\mathcal{B} = \{\mathbf{b}_1 = 1, \mathbf{b}_2 = t, \mathbf{b}_3 = t^2\}$, and let $\mathcal{C} = \{\mathbf{c}_1 = 1, \mathbf{c}_2 = 1 + t, \mathbf{c}_3 = 1 + t + t^2\}$, be bases for \mathbb{P}_2 . Then det $\begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{pmatrix} \neq \det \begin{pmatrix} P \\ \mathcal{B} \leftarrow \mathcal{C} \end{pmatrix}$.

For each of the following, let A be an $m \times n$ matrix.

T F
$$\operatorname{Col}(A) = \operatorname{Row}(A^T).$$

T F
$$\dim(\operatorname{Row}(A)) = n - \dim(\operatorname{Nul}(A)).$$

T F The solution set to $A\mathbf{x} = \mathbf{b}$ is a subspace of \mathbb{R}^n .