Name _____

Math 217 Winter, 2007 Midterm 1

Problem 1	Possible Points 10	Actual Points
2	10	
3	10	
TRUE/FALSE	20	
Total	50	

In all the problems (with the exception of the TRUE/FALSE), indicate how you arrived at your answer. The answer alone will get at best partial credit.

Problem 1 (10 points) a) Let $\mathbf{v}_1 = \begin{bmatrix} 3\\9\\3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0\\-12\\6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 4\\18\\1 \end{bmatrix}$. If $A = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3]$, find the solution set to $A\mathbf{x} = \begin{bmatrix} 6\\6\\12 \end{bmatrix}$, and describe it geometrically. b) Are the columns of A linearly independent or dependent? **Problem 2** (10 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation given by multiplication by the matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$. a) Is T one-to-one? If so, explain why. If not, give an example of two distinct

vectors \mathbf{x}_1 and \mathbf{x}_2 such that $T(\mathbf{x}_1) = T(\mathbf{x}_2)$.

b) Is T onto? If so, explain why. If not, give an example of a vector **b** in \mathbb{R}^3 such that the equation $T(\mathbf{x}) = \mathbf{b}$ has no solution.

Problem 3 (10 points)

a) Give an example of an invertible 2×2 matrix (other than the identity matrix).

b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by rotation counterclockwise by ninety degrees. Write down the standard matrix for T and the inverse of T.

c) Let $S : \mathbb{R}^2 \to \mathbb{R}^3$ given by the matrix $A = \begin{bmatrix} 3 & 0 \\ 1 & 1 \\ -1 & 2 \end{bmatrix}$. Let $U : \mathbb{R}^2 \to \mathbb{R}^3$ be the composition of S and T, i.e., $U(\mathbf{x}) = S(T(\mathbf{x}))$. Write down the standard

matrix for U.

TRUE/FALSE (20 points)

Below are ten assertions. For each, circle either T or F to indicate whether you believe the assertion is always TRUE or sometimes FALSE. There is no need to justify your response.

- T F Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a set of k linearly independent vectors in \mathbb{R}^5 . Then k < 6.
- T F The span of two vectors is a plane.
- T F If A is an $n \times n$ matrix such that $A = A^T$, then A is invertible.
- T F Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be three linearly independent vectors in \mathbb{R}^n . Then Span $\{\mathbf{u}, \mathbf{v}\} \neq$ Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
- T F Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be three linearly dependent vectors in \mathbb{R}^n . Then Span $\{\mathbf{u}, \mathbf{v}\} = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}.$
- T F Suppose A and B are invertible matrices of the same size. Then the inverse of $(AB)^T$ is $(A^T)^{-1}(B^T)^{-1}$.
- T F A homogeneous system is always consistent.
- T F Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent vectors. Then we can write $\mathbf{v}_1 = c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$ for some real scalars c_2, \dots, c_k .
- T F The $n \times n$ identity matrix, I_n , is row equivalent to every invertible $n \times n$ matrix.
- T F Let $T : \mathbb{R}^2 \to \mathbb{R}^m$ be a linear transformation, and let \mathbf{u}, \mathbf{v} , and \mathbf{w} be three vectors in the range of T. Then $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent.