Name \qquad

Math 217 Winter, 2007
 Midterm 1

Problem Possible Points Actual Points
$2 \quad 10$
$3 \quad 10$
TRUE/FALSE 20

Total 50
In all the problems (with the exception of the TRUE/FALSE), indicate how you arrived at your answer. The answer alone will get at best partial credit.

Problem 1 (10 points)
a) Let $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 9 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -12 \\ 6\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{r}4 \\ 18 \\ 1\end{array}\right]$. If $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$,
find the solution set to $A \mathbf{x}=\left[\begin{array}{r}6 \\ 6 \\ 12\end{array}\right]$, and describe it geometrically.
b) Are the columns of A linearly independent or dependent?

Problem 2 (10 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by multiplication by the matrix $A=\left[\begin{array}{rr}1 & -2 \\ 2 & 1 \\ 1 & 3\end{array}\right]$.
a) Is T one-to-one? If so, explain why. If not, give an example of two distinct vectors \mathbf{x}_{1} and \mathbf{x}_{2} such that $T\left(\mathbf{x}_{1}\right)=T\left(\mathbf{x}_{2}\right)$.
b) Is T onto? If so, explain why. If not, give an example of a vector \mathbf{b} in \mathbb{R}^{3} such that the equation $T(\mathbf{x})=\mathbf{b}$ has no solution.

Problem 3 (10 points)
a) Give an example of an invertible 2×2 matrix (other than the identity matrix).
b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by rotation counterclockwise by ninety degrees. Write down the standard matrix for T and the inverse of T.
c) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by the matrix $A=\left[\begin{array}{rr}3 & 0 \\ 1 & 1 \\ -1 & 2\end{array}\right]$. Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the composition of S and T, i.e., $U(\mathbf{x})=S(T(\mathbf{x}))$. Write down the standard matrix for U.

TRUE/FALSE (20 points)

Below are ten assertions. For each, circle either T or F to indicate whether you believe the assertion is always TRUE or sometimes FALSE. There is no need to justify your response.
$\mathrm{T} \quad \mathrm{F}$ Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a set of k linearly independent vectors in \mathbb{R}^{5}. Then $k<6$.

T F The span of two vectors is a plane.
$\mathrm{T} \quad \mathrm{F} \quad$ If A is an $n \times n$ matrix such that $A=A^{T}$, then A is invertible.
T F Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be three linearly independent vectors in \mathbb{R}^{n}. Then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\} \neq \operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
$\mathrm{T} \quad \mathrm{F}$ Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be three linearly dependent vectors in \mathbb{R}^{n}. Then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

T F Suppose A and B are invertible matrices of the same size. Then the inverse of $(A B)^{T}$ is $\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$.

T F A homogeneous system is always consistent.
T F Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent vectors. Then we can write $\mathbf{v}_{1}=c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}$ for some real scalars c_{2}, \ldots, c_{k}.

T F The $n \times n$ identity matrix, I_{n}, is row equivalent to every invertible $n \times n$ matrix.
$\mathrm{T} \quad \mathrm{F} \quad$ Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let \mathbf{u}, \mathbf{v}, and \mathbf{w} be three vectors in the range of T. Then $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent.

