WHY ROW REPLACEMENT DOESN'T CHANGE THE SOLUTION SET

A couple of you have asked about a rigorous explanation of why this is true. Here's how I would explain it.

Suppose we are given a system of linear equations in n variables and m equations,

$$
\begin{aligned}
& a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots
\end{aligned}
$$

For shorthand, lets call this system of equations S. We want to show that it has the same solution as the system obtained by adding c times the i th row of S to the j th row of S. (i and j are arbitrary integers between 1 and m). We call this new, row-replaced system S^{\prime}.

There are two things to show. Every solution of S is a solution of $S^{\prime} A N D$ every solution of S^{\prime} is a solution of S.

To start with, let $t=\left(t_{1}, \ldots, t_{n}\right)$ be a solution of S. We want to show it is also a solution of S^{\prime}. Note that

$$
\begin{equation*}
a_{k 1} t_{1}+\ldots+a_{k n} t_{n}=b_{k} \tag{1}
\end{equation*}
$$

holds for every value of k, and so it is easy to see that t is a solution for every equation of S^{\prime} (except possibly the j th one, ie. the modified one). The j th equation of S^{\prime} is

$$
c\left(a_{i 1} x_{1}+\ldots+a_{i n} x_{n}\right)+a_{j 1} x_{1}+\ldots+a_{j n} x_{n}=c b_{i}+b_{j} .
$$

However, if we substitute the t 's into the x 's, using (1), we get that

$$
c b_{i}+b_{j}=c b_{i}+b_{j},
$$

which is certainly true. Therefore, every solution of S is also a solution of S^{\prime}.
To show the converse (that is, to show that every solution of S^{\prime} is a solution of S) we note the following fact. One can do a single row replacement operation to S^{\prime} to re-obtain S (add $-c$ times row i to row j). Thus we can perform the same argument as above (with the roles of S and S^{\prime} reversed) and see that every solution of S^{\prime} is also a solution of S.

