1. Let V be a vector space and suppose that $S=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a spanning set for V. We are also given a vector space W, and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots \mathbf{w}_{\mathbf{n}}$. Prove that there is at MOST one linear transformation $T: V \rightarrow W$ such that $T\left(\mathbf{v}_{\mathbf{1}}\right)=\mathbf{w}_{\mathbf{1}}, T\left(\mathbf{v}_{\mathbf{2}}\right)=\mathbf{w}_{\mathbf{2}}, \ldots$, and $T\left(\mathbf{v}_{\mathbf{n}}\right)=\mathbf{w}_{\mathbf{n}}$. (7 points)

Suppose T and T^{\prime} are linear transformations such that $T\left(\mathbf{v}_{\mathbf{i}}\right)=T^{\prime}\left(\mathbf{v}_{\mathbf{i}}\right)$ for all i. Choose \mathbf{x} in V, since the $\mathbf{v}_{\mathbf{i}}$'s span V, we can write $\mathbf{x}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}$ for some constants c_{i}. Now note that

$$
\begin{gathered}
T(\mathbf{x})=T\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}\right)=c_{1} T\left(\mathbf{v}_{\mathbf{1}}\right)+c_{2} T\left(\mathbf{v}_{\mathbf{2}}\right)+\ldots+c_{n} T\left(\mathbf{v}_{\mathbf{n}}\right) \\
=c_{1} T^{\prime}\left(\mathbf{v}_{\mathbf{1}}\right)+c_{2} T^{\prime}\left(\mathbf{v}_{\mathbf{2}}\right)+\ldots+c_{n} T^{\prime}\left(\mathbf{v}_{\mathbf{n}}\right)=T^{\prime}\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}\right)=T^{\prime}(\mathbf{x})
\end{gathered}
$$

so T and T^{\prime} agree on every $\mathbf{x} \in V$, and thus they are the same function.
2. Let V be a vector space. I am telling you that, K, the set of all functions $f: V \rightarrow \mathbb{R}$ is a vector space (you don't need to prove it). Let V^{*} be the set of all linear transformations $T: V \rightarrow \mathbb{R}$. Prove that V^{*} is a vector space. (6 points)
V^{*} is a subset of K, which is a vector space. So it is sufficient to prove that V^{*} is a subspace. Note that the vectors of V^{*} are themselves linear transformations $T: V \rightarrow \mathbb{R}$. First we prove that the zero element of K is in V^{*}, ie $\mathbf{0}_{K} \in V^{*}$. The zero element of K is the function $f: V \rightarrow \mathbb{R}$ such that $f(\mathbf{v})=0$. This is easily seen to be a linear transformation, so it's in V^{*}.

We want to show that V^{*} is closed under addition. So we choose two elements of V^{*}, which are linear transformation T_{1} and T_{2}, and we want to show that $T_{3}(\mathbf{v})=T_{1}(\mathbf{v})+T_{2}(\mathbf{v})$ is a linear transformation (and thus $T_{3}=T_{1}+T_{2} \in V^{*}$). We have to check two things. First note that

$$
T_{3}(\mathbf{u}+\mathbf{v})=T_{1}(\mathbf{u}+\mathbf{v})+T_{2}(\mathbf{u}+\mathbf{v})=T_{1}(\mathbf{u})+T_{1}(\mathbf{v})+T_{2}(\mathbf{u})+T_{2}(\mathbf{v})=\left(T_{1}(\mathbf{u})+T_{2}(\mathbf{u})\right)+\left(T_{1}(\mathbf{v})+T_{2}(\mathbf{v})\right)=T_{3}(\mathbf{u})+T_{3}(\mathbf{v}) .
$$

So T_{3} satisfies one condition to be a linear transformation. On the other hand

$$
T_{3}(c \mathbf{u})=T_{1}(c \mathbf{u})+T_{2}(c \mathbf{u})=c\left(T_{1}(\mathbf{u})+T_{2}(\mathbf{u})\right)=c T_{3}(\mathbf{u}) .
$$

And thus $T_{3}=T_{1}+T_{2}$ is a linear transformation (and thus in V^{*}). Thus V^{*} is closed under addition.

To complete the proof we show that V^{*} is closed under scalar multiplication. So choose $T_{1} \in V^{*}$ (T_{1} is assumed to be a linear transformation) and $d \in \mathbb{R}$ and let $T_{4}(\mathbf{v})=d T_{1}(\mathbf{v})$. We need to show that $T_{4}=d T_{1}$ is in V^{*} (ie, that it is a linear transformation). We check two things. First note

$$
T_{4}(\mathbf{u}+\mathbf{v})=d T_{1}(\mathbf{u}+\mathbf{v})=d T_{1}(\mathbf{u})+d T_{1}(\mathbf{v})=T_{4}(\mathbf{u})+T_{4}(\mathbf{v})
$$

and so T_{4} satisfies one condition to be a linear transformation. On the other hand

$$
T_{4}(c \mathbf{u})=d T_{1}(c \mathbf{u})=d c T_{1}(\mathbf{u})=c\left(d T_{1}(\mathbf{u})\right)=c T_{4}(\mathbf{u}) .
$$

Thus we see that T_{4} is a linear transformation and thus $T_{4} \in V^{*}$. I would have accepted a less detailed explanation for full credit, but for the write-up, I decided to write EVERYTHING down.
3. Let V be the set of all differentiable functions, $f(x)$, where $f: \mathbb{R} \rightarrow \mathbb{R}$. Define a function $T: V \rightarrow \mathbb{R}^{2}$ where $T(f(x))=\left[\begin{array}{c}f(3) \\ f^{\prime}(3)\end{array}\right]$.
(a) Prove that T is a linear transformation. (5 points)

$$
T(g(x)+h(x))=\left[\begin{array}{c}
g(3)+h(3) \\
g^{\prime}(3)+h^{\prime}(3)
\end{array}\right]=\left[\begin{array}{c}
g(3) \\
g^{\prime}(3)
\end{array}\right]+\left[\begin{array}{c}
h(3) \\
h^{\prime}(3)
\end{array}\right]=T(g(x))+T(h(x))
$$

and

$$
T(c g(x))=\left[\begin{array}{c}
c g(3) \\
c g^{\prime}(3)
\end{array}\right]=c\left[\begin{array}{c}
g(3) \\
g^{\prime}(3)
\end{array}\right]=c T(g(x))
$$

so we are done!
(b) Is $f(x)=x^{3}-9 x$ in the kernel of T ? Why or why not. (2 points)

Note $f(3)=27-27=0$ and $f^{\prime}(3)=3(3)^{2}-9=18$. So $T(f(x))=\left[\begin{array}{c}0 \\ 18\end{array}\right] \neq \mathbf{0}$. Thus $f(x)$ is NOT in the kernel!

