MATH 217-4, EXTRA CREDIT \#5

The purpose of this extra credit assignment is to construct new vector spaces from existing vector spaces. We have already done this in certain situations. For example, given a vector space V and a set S of vectors of V, then $\operatorname{Span} S$ is a vector space itself, and a subspace of S.

Exercise 0.1. In the context above, prove that $\operatorname{Span}(S)$ is the smallest subspace of V that also contains S. (1 point)
Exercise 0.2. Suppose V is a vector space and $L \subset V$ is a subspace. Prove that $\operatorname{Span}(L)=$ L. (1 point)

We are going to give two other ways to construct vector spaces. The first is the cartesian product.
Definition 0.3. Let V and W be real-vector spaces. Define $V \times W$ to be the collection of all pairs (v, w) where $v \in V$ (ie, v is a "vector" in V) and $w \in W$ (ie, w is a "vector" in W). We define addition of pairs to be

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right) .
$$

We define multiplication of such a pair by a scalar $r \in \mathbb{R}$ to be

$$
r(v, w)=(r v, r w)
$$

Exercise 0.4. Prove that $V \times W$, with the addition and multiplication outlined above, is indeed a vector space. Hint: there are a lot of properties to check (2 points)

That should have been fairly straightforward, so now lets do something a bit more challenging.

Given a linear transformation $T: V \rightarrow W$ of vector spaces, we already know that ker T (ie, the kernel of T) is always a subspace of V, and thus a vector space in its own right. We are going to construct a vector space which in some ways is dual to $\operatorname{ker} T$.

We are going to start by looking at the situation of W a vector space and $L \subset W$ a subspace. For each $w \in W$, we consider the set $w+L=\{w+l$ where $l \in L\}$ (we thought about sets like this back in the first extra credit assignment).
Exercise 0.5. Prove that $w+L=w^{\prime}+L$ if and only if $w-w^{\prime} \in L$ (the last statement means that $w-w^{\prime}$ is a "vector" in the subspace L). (1 point)

We want to prove that the collection of all these $(w+L)$'s (where we throw out duplicate sets) is itself a vector space. We'll denote the set of all $(w+L)$'s (throwing out duplicates) as W / L. To do this, we have to define addition, scalar multiplication, and show they are well defined. I'll explain what this means momentarily.

We begin by defining addition. Give $w+L$ and $u+L$, we define their sum as follows,

$$
(w+L)+(u+L)=(w+u)+L
$$

In this case, being well defined means that if we are adding $w+L$ to $u+L$, then if $w+L=$ $w^{\prime}+L$, it doesn't matter whether we add $w+L$ or $w^{\prime}+L$, we get the same output.

Exercise 0.6. Prove that the addition defined above is well defined. That is, prove that if $w+L=w^{\prime}+L$, then for every $u+L$ we have

$$
(w+L)+(u+L)=\left(w^{\prime}+L\right)+(u+L)
$$

Hint: Use 0.5. (1 point)
We now define scalar multiplication. Given $w+L$ an element of W / L, and $r \in \mathbb{R}$. We define scalar multiplication as follows:

$$
r(w+L)=r w+L
$$

Of course, now we have to check that this is "well defined".
Exercise 0.7. Prove that the scalar multiplication defined above is well defined. That is, prove that if $w+L=w^{\prime}+L$, then for every $r \in \mathbb{R}$ we have

$$
r(w+L)=r\left(w^{\prime}+L\right)
$$

Hint: Use 0.5. (1 point)
Now we have given W / L addition and scalar multiplication, we need to finish checking that it is a vector space.
Exercise 0.8. Prove that W / L, with the addition and multiplication defined above, is a vector space. Hint: there are a lot of properties to check. Pay particular attention to what elements w make $w+L$ the "zero vector" of W / L (2 points)

This construction, W / L, is called a quotient vector space. When talking about this space out loud, it is called " W modulo L ", or simply " $W \bmod L$ ". We would like to mention one final property of this construction.
Exercise 0.9. Given W and L as above, we would like to define a function $\phi: W \rightarrow W / L$ as follows

$$
\phi(w)=w+L
$$

Prove that ϕ defined this way is an onto (aka surjective) linear transformation. (1 point)
Exercise 0.10. With the notation of the previous exercise, find the kernel of the linear transformation $\phi: W \rightarrow W / L$. Then use it to explain why the statement, "Every subspace is the kernel of some linear transformation", is true. (1 point)

I would like to show one place where this construction comes up very often. Just like we started with, suppose that $T: V \rightarrow W$ is a linear transformation. First, recall that the range (aka image) of T is itself a subspace of W, and we denote it by $\operatorname{im} T \subset W$. The vector space $W /(\operatorname{im} T)$ is called the cokernel of T and is denoted by coker T.

This extra credit assignment will conclude with a famous theorem called "the first isomorphism theorem". Here's the setup.

Suppose that A and B are vector spaces and that $f: A \rightarrow B$ is a linear transformation of vector spaces. There is a natural onto (aka surjective) linear transformation $\phi: A \rightarrow$ $A /(\operatorname{ker} f)($ coming from 0.9). Define a function $\psi: A /(\operatorname{ker} f) \rightarrow B$ by $\psi(a+(\operatorname{ker} f))=f(a)$. We wish to show that this map is well defined.
Exercise 0.11. Prove that ψ is well defined. That is, suppose that $a+(\operatorname{ker} f)=a^{\prime}+(\operatorname{ker} f)$. Prove that $\psi(a+(\operatorname{ker} f))=\psi\left(a^{\prime}+(\operatorname{ker} f)\right)$. Hint: You might want to first prove that $f(a)=f\left(a^{\prime}\right)$ whenever $a-a^{\prime} \in \operatorname{ker} f$. (1 point)

Exercise 0.12. Prove that the map ψ defined above is a one-to-one (aka injective) linear transformation. (1 point)

Exercise 0.13. Prove that the linear transformation $f: A \rightarrow B$ can be written as a composition of linear transformations $\phi: A \rightarrow A /(\operatorname{ker} f)$ and $\psi: A /(\operatorname{ker} f) \rightarrow B$. In short, prove that $f=\psi \circ \phi$. Explain why this shows that every linear transformation can be written as a composition of a surjective linear transformation, followed by an injective linear transformation. (1 point).
Exercise 0.14. Explain why (in this setup) there is always a natural bijective linear transformation (aka an isomorphism) $A /(\operatorname{ker} f) \rightarrow \operatorname{im} f$. Hint: what is the range of ψ ? (1 point)

The previous four exercises make up "the first isomorphism theorem for vector spaces". These observations are fundamental to an extremely large chunk of modern mathematics.

