
EXTRA CREDIT #3

MATH 217 – SECTION 4

We’ve recently been introduced to abstract real vector spaces. The real means that we
use real numbers (R) as our scalar set. In this extra credit assignment, we’ll introduce other
sets of scalars we can use instead of the real numbers. To do this, we need to introduce the
notion of a field.

A field K is a set of elements satisfying the following properties.

(i) For every two elements r, s ∈ K, there is a way to add them to get another element
r + s ∈ K. (Recall, the expression a ∈ A means that a is an element in the set A).

(ii) For every two elements r, s ∈ K, there is a way to multiply them to get another
element rs ∈ K.

(iii) For every r, s ∈ K, we have r + s = s + r.
(iv) For every r, s, t ∈ K, we have r + (s + t) = (r + s) + t.
(v) There is an element 0 ∈ K such that r + 0 = r for every r ∈ K.
(vi) For every element r ∈ K, there is an element −r ∈ K such that (−r) + r = 0.
(vii) For every two elements r, s ∈ K, rs = sr.
(viii) For every two elements r, s, t ∈ K, r(st) = (rs)t.
(ix) There is an element 1 ∈ K such that 1r = r for every element r ∈ K.
(x) For every non-zero element r ∈ K, there is an element 1

r
inK such that r(1

r
) = 1.

(xi) For every elements r, s, t ∈ K, we have r(s + t) = rs + rt.

The first example of a field you’ve run across is the real numbers, but there are many
others.

For example, consider the set of fractions a
b

where a and b are integers and b 6= 0 (integers
are whole numbers that can be positive or negative). The set of these numbers (thought of
as a subset of the real numbers) form a field under the usual addition and multiplication.
This field is denoted by Q and is called the rational numbers or simply the rationals.

Exercise 0.1. Prove that the “zero” element whose existence is guaranteed by (v) is unique.
That is, suppose that 0′ is another element that also satisfies the property of (v), prove that
0′ = 0. (1 point)

In a similar way, one can prove that the 1 element from property (ix) is unique.

Exercise 0.2. Prove that multiplicative inverses are unique, that is, prove that if r is an
element and s is any other element such that rs = 1, then s = 1

r
. (1 point)

Exercise 0.3. Suppose that L is a field and that f ∈ L. Prove that 0f = 0 and f0 = 0.
Hint: What is 0 + 0? (1 point)

Exercise 0.4. Suppose that L is a field and that f, g ∈ K. If fg = 0, prove that either
f = 0 or g = 0 (it’s also possible that they are both zero). (1 point)

We are now going to construct another field besides R and Q. Let K be the set of all real
numbers that can be expressed as u + v

√
2 where u, v ∈ Q.
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Exercise 0.5. Prove that K is a field. (2 points) Hint: Pay particular attention to how
to satisfy property (x). Let u + v

√
2 ∈ K, consider u − v

√
2. Is the product of these two

elements in Q? Can the product of these two elements be zero? (2 points)

The field K constructed above usually denoted by Q[
√

2].

The set of complex numbers C is also a field. In particular, let C be set of all elements
r + si where r, s ∈ R. We define i2 = −1 (i is thought of as the square root of −1). Using
this, we say that (r + si)(u + vi) = ru + rvi + usi− sv = (ru− sv) + (rv + us)i. And so we
have defined how the multiplication works.

Exercise 0.6. Prove that C is a field. (2 points)

Given any field K, one can define a K-vector space to be a set of objects satisfying the
properties in the book, but we use the “scalar set” K instead of R.

Exercise 0.7. Explain why C is a R-vector space (a real vector space). What is it’s dimen-
sion? Explain why R and Q[

√
2] are both Q vector spaces. What is the dimension of Q[

√
2]

as a Q vector space? (2 points)

We conclude with a more exotic sort of field, a finite field.
Let Z be the set of integers and let p be a prime positive integer. Consider the set of

numbers {0, 1, 2, 3, . . . , p − 2, p − 1}. We add and multiply these numbers using modular
(clock) arithmetic.

So suppose that p = 7 and we want to add the numbers 5 and 6. We would normally get
5 + 6 = 11, but using modular arithmetic, we would call this sum 4 (after you get to 7 you
loop around to zero, 4 is also the remainder you get when you divide 11 by 7). When we
multiply, we get the same thing, (5)(6) = 30 usually, but we would interpret this number as
(5)(6) = 2 (the remainder when you divide 30 by 7 is 2). Another way of saying this is that
30 mod 7 is the same as 2 mod 7 (it’s also the same as 9 mod 7 and −5 mod 7. This set of
these numbers with these operations is denoted by Z/(p).

First we do a couple exercises just to introduce you to modular (clock) arithmetic.

Exercise 0.8. Suppose p is a prime and that a mod p is the same as b mod p. Show that
a− b is a multiple of p. (1 point)

Exercise 0.9. In some sense, it doesn’t really matter how you represent your numbers.
Suppose p is a prime and that a mod p is the same as b mod p. If c is any number such that
0 ≤ c < p, show that a + c mod p is the same as b + c mod p. Likewise show that ac mod p
is the same as bc mod p. (1 point)

The final problem of this extra credit set is to prove that Z/(p) is a field.

Exercise 0.10. Prove that Z/(p) is a field. (3 points).


