1. Let A be the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$.
(a) Find a basis for $\operatorname{Col} A$ and find a basis for $\operatorname{Nul} A$. (12 points)

First we row reduce, and we get $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$. Clearly, the first column is the only pivot column, so a basis for $\operatorname{Col} A$ is just $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.

To find a basis for $\operatorname{Nul} A$, we row reduce the augmented matrix of usual homogeneous equation. After doing this, there is really only one equation to worry about $x_{1}+2 x_{2}+3 x_{3}=0$. So, $x_{1}=-2 x_{2}-3 x_{3}$, and thus the parametric vector form is $\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+$ $x_{3}\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]$. Therefore $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{Nul} A$.
(b) Show that $\left[\begin{array}{c}12 \\ -3 \\ -2\end{array}\right]$ is in $\operatorname{Nul} A$. Also write down it's coordinate vector in Nul A with respect to the basis you found in part (a). (8 points)

First we compute $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{c}12 \\ -3 \\ -2\end{array}\right]$ and note it is equal to zero, which proves the first part. For the second, note that $(-3)\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+(-2)\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}12 \\ -3 \\ -2\end{array}\right]$, which means that $\left[\begin{array}{l}-3 \\ -2\end{array}\right]$ is the desired coordinate vector.
2. Let V be the collection of differentiable functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (that is, the partials of f with respect to x and y both exist). I am telling you that V is a vector space, that is, you may assume that V is a vector space without proving it.

Define a linear transformation $T: V \rightarrow \mathbb{R}^{2}$ by $T(f(x, y))=\left[\begin{array}{c}\frac{\partial f}{\partial x}(5,-1) \\ \frac{\partial f}{\partial y}(5,-1)\end{array}\right]$. Prove that T is a linear transformation. (15 points)

We need to show that T respects addition and scalar multiplication. Let $g(x), h(x)$ be elements of V and let c be a scalar in \mathbb{R}. First addition:
$T(g(x)+h(x))=\left[\begin{array}{c}\frac{\partial(g+h)}{\partial x}(5,-1) \\ \frac{\partial(g+h)}{\partial y}(5,-1)\end{array}\right]=\left[\begin{array}{l}\frac{\partial g}{\partial x}(5,-1)+\frac{\partial h}{\partial x}(5,-1) \\ \frac{\partial g}{\partial y}(5,-1)+\frac{\partial h}{\partial y}(5,-1)\end{array}\right]=\left[\begin{array}{c}\frac{\partial g}{\partial x}(5,-1) \\ \frac{\partial g}{\partial y}(5,-1)\end{array}\right]+\left[\begin{array}{c}\frac{\partial h}{\partial x}(5,-1) \\ \frac{\partial h}{\partial y}(5,-1)\end{array}\right]=T(g(x))+T(h(x))$.
Next, scalar multiplication:

$$
T(c g(x))=\left[\begin{array}{c}
\frac{\partial(c g)}{\partial x}(5,-1) \\
\frac{\partial(c g)}{\partial y}(5,-1)
\end{array}\right]=\left[\begin{array}{c}
c \frac{\partial g}{\partial x}(5,-1) \\
c \frac{\partial(g)}{\partial y}(5,-1)
\end{array}\right]=c\left[\begin{array}{c}
\frac{\partial g}{\partial x}(5,-1) \\
\frac{\partial(g)}{\partial y}(5,-1)
\end{array}\right]=c T(g(x)) .
$$

This proves that T is a linear transformation.
3. Let M be the 4×4 matrix

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
1 & 3 & 0 & 1 \\
0 & 0 & -2 & 0 \\
1 & 2 & 0 & 1
\end{array}\right]
$$

(a) Compute $\operatorname{det} M$. (15 points)

First we do two row replacements to M to get

$$
M^{\prime}=\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note that this matrix is diagonal, and so has determinant $(1)(1)(-2)(1)=-2$. Since M^{\prime} and M are only related by row replacements, $\operatorname{det} M=-2$ as well.
(b) What is the dimension of the Null space of M ? Explain your reasoning. (5 points)

Since $\operatorname{det} M$ is non-zero, by the IMT, $\operatorname{dim}(\operatorname{Nul} M)=0$.
4. Suppose that V and W are vector spaces and suppose that $T: V \rightarrow W$ is a surjective (aka, onto) linear transformation. If $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a spanning set for V, prove that $T(S)=\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), T\left(\mathbf{v}_{\mathbf{2}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{n}}\right)\right\}$ is a spanning set for W. (10 points)

We need to show, that for each $\mathbf{w} \in W$, there exists scalars c_{1}, \ldots, c_{n} such that $\mathbf{w}=$ $c_{1} T\left(\mathbf{v}_{\mathbf{1}}\right)+c_{2} T\left(\mathbf{v}_{\mathbf{2}}\right)+\ldots+c_{n} T\left(\mathbf{v}_{\mathbf{n}}\right)$. So choose an arbitrary $\mathbf{w} \in W$. Since T is surjective, there exists a $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{w}$. Since S spans V, there exist scalars, c_{1}, \ldots, c_{n} such that $c_{1} \mathbf{v}_{\mathbf{1}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}=\mathbf{v}$. Applying T gives us

$$
c_{1} T\left(\mathbf{v}_{\mathbf{1}}\right)+\ldots+c_{n} T\left(\mathbf{v}_{\mathbf{n}}\right)=T\left(c_{1} \mathbf{v}_{\mathbf{1}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}\right)=T(\mathbf{v})=\mathbf{w}
$$

which completes our proof.
5. Suppose that V is a vector space and that H and K are subspaces of V. Prove that $H \cap K$ is also a subspace of V.

Reminder: Here $H \cap K$ is the set of all vectors $\mathbf{v} \in V$ such that \mathbf{v} is in $H A N D \mathbf{v}$ is in K. That is, $H \cap K$ is the vectors that are common to both H and K. (15 points)

We need to show that $H \cap K$ satisfies the three properties of a subspace.

- Zero: First we show that $\mathbf{0}$ is in $H \cap K$. But note that $\mathbf{0} \in H$ since H is a subspace, and $\mathbf{0} \in K$ since K is a subspace, so $\mathbf{0} \in H \cap K$ as desired.
- Addition: Choose $\mathbf{u}, \mathbf{v} \in H \cap K$, we want to show that their sum is in $H \cap K$. This implies that $\mathbf{u}, \mathbf{v} \in H$ so that $\mathbf{u}+\mathbf{v} \in H$ since H is a subspace. Likewise, this implies that $\mathbf{u}, \mathbf{v} \in K$ so that $\mathbf{u}+\mathbf{v} \in K$ since K is a subspace. Therefore $\mathbf{u}+\mathbf{v} \in H \cap K$ as desired.
- Scalars: Choose $\mathbf{u} \in H \cap K$ and choose c a real number, we want to show that $c \mathbf{u} \in H \cap K$. Since $\mathbf{u} \in H, c \mathbf{u} \in H$ because H is a subspace. Likewise, since $\mathbf{u} \in K$, $c \mathbf{u} \in K$ because K is a subspace. This proves that $c \mathbf{u} \in H \cap K$ as desired.
Therefore, $H \cap K$ is a subspace.

6. Let P_{4} be the vector space of polynomials of degree less than or equal to 4 . Consider the linear transformation $T: P_{4} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(p(x))=\left[\begin{array}{c}
p(0) \\
p(1) \\
p^{\prime}(0)
\end{array}\right]
$$

You do NOT need to prove that T is a linear transformation, you may assume that it is.
(a) Let $p(x)=x+1, q(x)=x^{2}, r(x)=x$. Prove that $\{T(p(x)), T(q(x)), T(r(x))\}$ is a linearly independent set. (5 points)

Note $T(p(x))=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], T(q(x))=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $T(p(x))=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. There are many ways to show that these are linearly independent, here is one way. Consider the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$. By doing a row replacement, we see that this matrix is row equivalent to $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$, which obviously has non-zero determinant ($\operatorname{det}=1 \neq 0$).
(b) Compute the dimension of the range of T. (5 points)

First note that the range of T is a subspace of \mathbb{R}^{3}. Since the range of T has 3 linearly independent vectors (by part (a)), $\operatorname{dim}($ range $T) \geq 3$. On the other hand, since it's a subspace of \mathbb{R}^{3} (which has dimension 3), dim $($ range $T) \leq 3$ (basically because you can't have more than three independent vectors in $\left.\mathbb{R}^{3}\right)$. Therefore, the only possibility is that $\operatorname{dim}(\operatorname{range} T)=3$.
(c) Compute the dimension of the kernel of T. (5 points)

By the rank theorem, $\operatorname{dim}($ range $T)+\operatorname{dim}(\operatorname{ker} T)=\operatorname{dim} P_{4}$. But $\operatorname{dim} P_{4}=5$, and so using part (b), we see that $\operatorname{dim}(\operatorname{ker} T)=2$.
(EC) Let V be a vector space and let K be the set of functions $f: V \rightarrow \mathbb{R} . K$ is a vector space, you don't need to prove it.

For solutions to the extra credit, see the already posted solutions to Quiz \#7.
(a) Let $z: V \rightarrow \mathbb{R}$ be the element of K such that $z(\mathbf{v})=0$ for every $\mathbf{v} \in V$. Prove that z is a linear transformation. (1 point)
(b) Let T_{1} and T_{2} be elements of K that are also linear transformations. Prove that T_{3} is a linear transformation where $T_{3}(\mathbf{v})=T_{1}(\mathbf{v})+T_{2}(\mathbf{v})$ for any $\mathbf{v} \in V$. (1 point)
(c) Let T_{1} be an element of K that is also a linear transformation. If d is any element of \mathbb{R}, prove that T_{4} is a linear transformation where $T_{4}(\mathbf{v})=d T_{1}(\mathbf{v})$. (1 point)
(d) Let V^{*} be the set of all linear transformations $T: V \rightarrow \mathbb{R}$. Prove that V^{*} is a vector space. (2 points)

