1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
0.5 \\
2
\end{array}\right], \text { and } T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right]
$$

(a) Write down a matrix A such that $T(\mathbf{x})=A \mathbf{x}$ (10 points).

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
3 & 0.5 & 4 \\
0 & 2 & 3
\end{array}\right]
$$

(b) Find an inverse to A or say why it doesn't exist. If you can't figure out part (a), use the matrix $\left[\begin{array}{ccc}1 & 1 & 0 \\ 3 & 4 & \frac{1}{3} \\ 0 & 8 & 4\end{array}\right] \cdot(20$ points $)$

$$
A^{-1}=\left[\begin{array}{ccc}
13 & -4 & 1 \\
18 & -6 & 2 \\
-12 & 4 & -1
\end{array}\right]
$$

(c) Explain why the product $A^{-1}\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$ should equal $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. Check if your inverse matrix satisfies this property. (10 points)

We have, $A^{-1}\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]=A^{-1} A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=I_{3 \times 3}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. In our particular case, we just note that

$$
(1)(13)+(3)(-4)+(0)(1)=1,
$$

$$
(1)(18)+(-6)(3)+(0)(2)=0 \text { and }
$$

$$
(1)(-12)+(3)(4)+(0)(-1)=0 \text {. }
$$

2. Suppose M is a 3×4 matrix. If the system of equations corresponding to $M \mathbf{x}=\mathbf{0}$ has two free variables, is it possible that the linear transformation

$$
\mathrm{x} \rightarrow M \mathrm{x}
$$

is surjective (recall surjective means onto) or injective (recall injective means one-to-one)? Why or why not? (15 points)

Since M has two free variables, it has two columns without pivots. Since it has four columns, it must have only 2 pivots. Therefore we note that M doesn't have a pivot in every column, and so the associated linear transform is NOT injective. We likewise note that M doesn't have a pivot in every row, and so we know that the associated linear is NOT surjective.
3. Suppose that $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{6}. Further suppose that \mathbf{w} is a vector in \mathbb{R}^{6} such that \mathbf{w} is not an element of $\operatorname{Span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right)$.
Is it true that $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{w}\right\}$ is linearly independent? Why or why not? (15 points)
It is linearly independent. Suppose that $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}+c_{4} \mathbf{w}=0$ for some constants c_{i}. We want to show that these constants must all be zero (which will show what we want). We consider two cases.

Case 1: $c_{4} \neq 0$. But then we can write $\mathbf{w}=\frac{-c_{1}}{c_{4}} \mathbf{v}_{\mathbf{1}}+\frac{-c_{2}}{c_{4}} \mathbf{v}_{\mathbf{2}}+\frac{-c_{3}}{c_{4}} \mathbf{v}_{\mathbf{3}}$ which is impossible since \mathbf{w} is not in the span of $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$.

Case 2: $c_{4}=0$. Then we have that $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}=0$ which implies that c_{1}, c_{2}, and c_{3} must be zero as well.

Therefore, the only possibility is that all the c_{i} are zero which proves what we wanted.
4. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation associated to the matrix

$$
M=\left[\begin{array}{cccc}
1 & -1 & 0 & 2 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

Write out the solution to $T(\mathbf{x})=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ in parametric vector form. (15 points)
The reduced echelon form of the associated augmented matrix is $\left[\begin{array}{ccccc}1 & 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
Writing out our equations we get that

$$
x_{1}+x_{3}+x_{4}=3 \text { and } x_{2}+x_{3}-x_{4}=1 \text { with } x_{3} \text { and } x_{4} \text { free. }
$$

Therefore the parametric form of this solution set is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]
$$

5. Suppose that A and B are 22×22 matrices. Suppose that A is invertible but $A B$ is not invertible. Prove that the linear transformation $T(\mathbf{x})=B \mathbf{x}$ is not injective (which is to say, is not one-to-one). (15 points)

It is enough to show that $T(\mathbf{x})=\mathbf{0}$ has a non-trivial solution, and so that is what we will do. Since $A B$ is not invertible (and it is square), $(A B) \mathbf{x}=\mathbf{0}$ has a nontrivial solution. So

$$
A^{-1}(A B) \mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}
$$

has a non-trivial solution as well. However, $A^{-1}(A B) \mathbf{x}=I B \mathbf{x}=B \mathbf{x}$. Therefore, the equation $B \mathbf{x}=\mathbf{0}$ has a nontrivial solution and we are done.
(EC) Suppose that A is an invertible 6×6 matrices and B is an invertible 4×4 matrix. If

$$
C=\left[\begin{array}{cc}
0_{6 \times 4} & A \\
B & 0_{4 \times 6}
\end{array}\right]
$$

then find C^{-1} as a partitioned matrix in terms of A^{-1} and B^{-1}. Explicitly state the sizes of the various pieces of the partitioned C^{-1}. Here $0_{6 \times 4}$ means the matrix with all entries zero and with 6 rows and 4 columns. (5 points)

First we check that the matrix C really is square. Since A has 6 columns, we see that C has $6+4=10$ columns. Since B has 4 rows, we see that C has $4+6=10$ rows. Therefore C is square. So break up C^{-1} into

$$
D=C^{-1}=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
$$

where D_{11} is $4 \times 6, D_{12}$ is $4 \times 4, D_{21}$ is 6×6 and D_{22} is 6×4. We know that

$$
C D=I_{10 \times 10}=\left[\begin{array}{cc}
I_{6 \times 6} & 0_{6 \times 4} \\
0_{4 \times 6} & I_{4 \times 4}
\end{array}\right]
$$

Therefore we have the following four equations,

$$
\begin{align*}
& 0_{6 \times 4} D_{11}+A D_{21}=I_{6 \times 6} \tag{1}\\
& B D_{11}+0_{4 \times 6} D_{21}=0_{4 \times 6} \tag{2}\\
& 0_{6 \times 4} D_{12}+A D_{22}=0_{6 \times 4} \tag{3}\\
& B D_{12}+0_{4 \times 6} D_{22}=I_{4 \times 4} \tag{4}
\end{align*}
$$

We first consider equation (2). This is just $B D_{11}=0_{4 \times 6}$. Since B is invertible, we see that $D_{11}=B^{-1} 0_{4 \times 6}=0_{4 \times 6}$. Likewise when considering equation (3), we see that $A D_{22}=0_{6 \times 4}$, and therefore, since A is invertible, $D_{22}=A^{-1} 0_{6 \times 4}=0_{6 \times 4}$. Equation (1) says that $A D_{21}=I_{6 \times 6}$ and so $D_{21}=A^{-1}$ since D_{21} is square. Likewise, equation (4) says that $B D_{12}=I_{4 \times 4}$ and so $D_{12}=B^{-1}$ since D_{12} is square.

In summary,

$$
D=\left[\begin{array}{cc}
0_{4 \times 6} & B^{-1} \\
A^{-1} & 0_{6 \times 4}
\end{array}\right]
$$

A quick check verifies that D is indeed is the inverse to C.

