INTRODUCTION TO DIFFERENTIAL EQUATIONS

MATH 186-1

1. Ordinary differential equations

We work with real numbers in this worksheet.
Definition 1.1. Fix x to be a variable, and $y:[a, b] \rightarrow \mathbb{R}$ to be an unknown function (of x).
An ordinary differential equation is an equation which relates derivatives of y with x and/or y and/or other derivatives of y.

Example 1.2. The following are examples of differential equations.
(1) $y^{\prime}=x^{2}+x$
(2) $y^{\prime}=2 x \cos \left(x^{2}\right)$
(3) $y^{\prime}=0$
(4) $y^{\prime}=y$
(5) $y^{\prime}=x y$
(6) $y^{\prime}=x^{2} y+y$
(7) $y^{\prime}=y+x+1$
(8) $y^{\prime \prime}+y^{\prime}+2 y=0$
(9) $y^{(3)}=-y^{\prime}$

Definition 1.3. The order of a differential equation is the degree of the highest derivative of y that appears in the differential equation.

1. Find the orders of the differential equations from Example 1.2.

Solution: $(1)=1,(2)=1,(3)=1,(4)=1,(5)=1,(6)=1,(7)=1,(8)=2,(9)=3$
Definition 1.4. To solve a differential, you need to find a function y that satisfies the equation.
2. Find all solutions to the differential equations (1), (2) and (3) from Example 1.2. Why can't we do something similar for the other examples?

Solution:
(1) $y^{\prime}=x^{2}+x$ so $y=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+C$ works for any constant C.
(2) $y^{\prime}=2 x \cos (x)$ so $y=\sin \left(x^{2}\right)+C$ works for any constant C.
(3) $y^{\prime}=0$ so $y=C$ works for any constant C.

This doesn't work for the other problems because they aren't $y^{\prime}=$ a function of x.

We'll discuss our first method for finding a solution to a differential equation.
Definition 1.5. A first order differential equation is called separable if it can be written in the form $y^{\prime}=f(y) g(x)$.
3. Which of the equations from Example 1.2 are separable?

Solution: Equations (1), (2), (3), (4), (5), (6) are all separable.
If a differential equation is separable, you can rewrite it in the form $\frac{1}{f(y)} y^{\prime}=g(x)$ (at least as long as $f(y)$ is not zero). Define a new function H to be a antiderivative of $\frac{1}{f(x)}$. Then $(H(y))^{\prime}=\frac{1}{f(y)} y^{\prime}$ by the chain rule. If we further let G be any antiderivative of $g(x)$, then we know that

$$
(H(y))^{\prime}=G^{\prime}(x)
$$

and so $H(y)=G(x)+C$ where C is some constant (remember, two differentiable functions with the same derivative differ up to a constant).

Now you have an implicit equation relating y and x. You can hopefully solve for y.
Example 1.6. Consider the differential equation $y^{\prime}=y^{2}$, it is separable with $f(y)=y^{2}$ and $g(x)=1$. Write $\frac{1}{y^{2}} y^{\prime}=1$. We want $H(x)$ to be an anti-derivative of $\frac{1}{x^{2}}$ (we assume $x \neq 0$), $H(x)=\frac{-1}{x}$ certainly works. We set $G(x)$ to be an anti-derivative of $1, G(x)=x$ works. Then we know that $H(y)=G(x)+C$. Thus $\frac{-1}{y}=x+C$ and so $y=\frac{-1}{x+C}$.

To check our work, we plug this solution back into our original equation. $y^{\prime}=y^{2}$. We get

$$
y^{\prime}(x)=(-1) \frac{-1}{(x+C)^{2}}=\frac{1}{(x+C)^{2}}=\frac{(-1)^{2}}{(x+C)^{2}}=y^{2}(x)
$$

as desired.
4. Find a solution to each of the differential equations you said were separable (that you haven't already solved before). Check your solutions!
Solution: We need to solve (4), (5) and (6).
(4) $y^{\prime} \frac{1}{y}=1$. So $f(y)=\frac{1}{y}$. An antiderivative is $H(y)=\ln (y) . G$ is an antiderivative of 1 so $G(x)=x$ works. Write $\ln (y)=x+C$ and so $y=e^{x+C}=k e^{x}$ (for some non-zero constant k, of course, if $k=0$,it's easy to check that $y=0$ is also a solution). To check our solution, notice that $y^{\prime}=\left(k e^{x}\right)^{\prime}=k e^{x}=y$.
(5) $y^{\prime} \frac{1}{y}=x$. Just as in (4), $H(y)=\ln (y)$ but now $G(x)=\frac{1}{2} x^{2}$. Set $\ln (y)=\frac{1}{2} x^{2}+C$ and so $y=e^{\frac{1}{2} x^{2}+C}=k e^{x^{2} / 2}$ for some constant k. To check our solution, notice that $y^{\prime}=k e^{x^{2} / 2}\left(x^{2} / 2\right)^{\prime}=$ $x k e^{x^{2} / 2}=x y$ as desired.
(6) $y^{\prime}=\left(x^{2}+1\right) y$ and thus $y^{\prime} \frac{1}{y}=\left(x^{2}+1\right)$. Again, $H(y)=\ln (y)$. Now, $g(x)=x^{2}+1$ so $G(x)=\frac{1}{3} x^{3}+x$. Thus $\ln (y)=\frac{1}{3} x^{3}+x+C$ and so (now skipping a step) $y=k e^{\frac{1}{3} x^{3}+x}$ for some constant k. To check our solution, notice that

$$
y^{\prime}=k e^{\frac{1}{3} x^{3}+x}\left(\frac{1}{3} x^{3}+x\right)^{\prime}=k e^{\frac{1}{3} x^{3}+x}\left(x^{2}+1\right)=x^{2} y+y
$$

as desired.

Another way to find solutions to differential equations is to find power series that solve the differential equations. For example, consider again the differential equation $y^{\prime}=y$. If we imagine that y can be written as a power series

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

then we know that

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and so $\frac{1}{(n+1)} a_{n}=a_{n+1}$ for every n. This is a recursive formula for the coefficients. In particular, if we fix any a_{0}, then

$$
\begin{array}{rlrl}
a_{1}=a_{0} & a_{2} & =\frac{1}{2} a_{1} & =\frac{1}{2} a_{0} \\
a_{3}=\frac{1}{3} a_{2}=\frac{1}{3!} a_{0} & a_{4}=\frac{1}{4} a_{3} & =\frac{1}{4!} a_{0} \\
\cdots & a_{n} & =\frac{1}{n!} a_{0}
\end{array}
$$

So a solution is $y(x)=\sum_{n=0}^{\infty} a_{0} \frac{1}{n!} x^{n}$ for any a_{0}. (It is easy to check that this converges)
5. Show that the power series solution written above is the same solution as the one you found when you did problem 4.

Solution: We only need to check (4) because that is the one that's worked out above. For (4), we found that $y=k e^{x}$ is a solution (where k is an arbitrary constant). Above, we found that $\sum_{n=0}^{\infty} a_{0} \frac{1}{n!} x^{n}$ is also a solution where a_{0} is an arbitrary constant, but

$$
\sum_{n=0}^{\infty} a_{0} \frac{1}{n!} x^{n}=a_{0} \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}=a_{0} e^{x} .
$$

So we simply can set $k=a_{0}$ and note the solutions are the same.
6. Find a power series solution to (5) and (7) from Example 1.2. What are the radii over convergence?
Solution: (5) $y^{\prime}=x y$. So suppose that $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a solution. Then

$$
\begin{array}{rrrrrrr}
y^{\prime} & =a_{1} x^{0}+ & \text { (2) } a_{2} x^{1}+ & (3) a_{3} x^{2}+ & \text { (4) } a_{4} x^{3}+ & (5) a_{5} x^{4}+ & \ldots \\
=x y & a_{0} x^{1}+ & a_{1} x^{2}+ & a_{2} x^{3}+ & a_{3} x^{4}+ & \ldots
\end{array}
$$

Thus $a_{1}=0, a_{0}$ is arbitrary, and in general, $n a_{n}=a_{n-2}$ for $n \geq 2$. Therefore, $a_{n}=0$ for n odd since $3 a_{3}=a_{1}=0$, and $5 a_{5}=a_{3}=0$, etc. Furthermore

$$
\begin{array}{rll}
2 a_{2}=a_{0} & \text { so } & a_{2}=\frac{1}{2} a_{0} \\
4 a_{4}=a_{2}=\frac{1}{2} a_{0} & \text { so } & a_{4}=\frac{1}{4} \frac{1}{2} a_{0} \\
6 a_{6}=a_{4}=\frac{1}{4} \frac{1}{2} a_{0} & \text { so } & a_{6}=\frac{1}{6} \frac{1}{4} \frac{1}{2} a_{0} \\
8 a_{8}=a_{6}=\frac{1}{6} \frac{1}{4} \frac{1}{2} a_{0} & \text { so } & a_{8}=\frac{1}{8} \frac{1}{6} \frac{1}{4} \frac{1}{2} a_{0}
\end{array}
$$

And in general, $a_{2 n}=\frac{1}{2 n} \frac{1}{2(n-1)} \frac{1}{2(n-2)} \cdots \frac{1}{2} a_{0}=\frac{1}{2^{n} n!} a_{0}$. Thus $a_{0} \sum_{n=0}^{\infty} \frac{1}{2^{n} n!} x^{2 n}$ is a solution. One can easily check using the ratio test that the radius of convergence is infinity.

Solution: (6) Suppose that $y=a_{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+\ldots$ is a solution. Then

$$
\begin{array}{rrrrrr}
y^{\prime} & = & a_{1} x^{0}+ & (2) a_{2} x^{1}+ & (3) a_{3} x^{2}+ & (4) a_{4} x^{3}+ \\
=y+x+1 & = & (5) a_{5} x^{4}+ & \ldots \\
\left(a_{0}+1\right) x^{0}+ & \left(a_{1}+1\right) x^{1}+ & a_{2} x^{2}+ & a_{3} x^{3}+ & a_{4} x^{4}+ & \ldots
\end{array}
$$

So $a_{1}=a_{0}+1$, thus $a_{2}=\frac{1}{2}\left(a_{1}+1\right)=\frac{1}{2}\left(a_{0}+2\right)$ and further on $a_{n}=\frac{1}{n} a_{n-1}=\frac{1}{n} \frac{1}{(n-1)} \cdots \frac{1}{2}\left(a_{0}+2\right)$. So the general solution is

$$
y=a_{0} x^{0}+\left(a_{0}+1\right) x^{1}+\frac{1}{2}\left(a_{0}+2\right) x^{2}+\frac{1}{3!}\left(a_{0}+2\right) x^{3}+\cdots+\frac{1}{n!}\left(a_{0}+2\right) x^{n}+\ldots
$$

The ratio test can again be used to verify that the radius of convergence is ∞.

Definition 1.7. A differential equation is called linear if it can be written in the following form.

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}(x)+a_{0}(x) y(x)=r(x)
$$

for some continuous functions $a_{i}(x)$ and $r(x)$.
7. Which of the differential equations from Example 1.2 are linear?

Solution: They all are linear!
8. Write down a new example of a non-linear differential equation and then solve it Hint: For an easy one, do something like Example 1.6.
Solution: $y^{\prime}=\frac{-1}{2} y^{3}$ is such an example. It is non-linear because y appears to the third power. However, it is still separable. Write $\frac{-2}{y^{3}} y^{\prime}=1$. Then $H(y)=\frac{1}{y^{2}}$ and $G(x)=x$. So $\frac{1}{y^{2}=x+C}$. Thus $y=\frac{1}{\sqrt{x+C}}$ works as long as things make sense (ie, $x+C$ is positive). To check our solution, we notice that

$$
y^{\prime}=(-1)\left(\frac{s 1}{\sqrt{x+C}}\right)^{2}(1 / 2) \frac{1}{\sqrt{x+C}}=(-1 / 2)\left(\frac{1}{\sqrt{x+C}}\right)^{3}=\frac{-1}{2} y^{3} .
$$

9. Prove that the set of solutions to a linear differential equation form a vector space of functions under the assumption that $r(x)$ is the zero function.
Solution: Suppose that $f(x)$ and $g(x)$ are solutions to a linear differential equation $a_{n}(x) y^{(n)}+$ $\cdots+a_{0}(x) y=0$. Then

$$
\begin{array}{r}
a_{n}(x) f^{(n)}(x)+\cdots+a_{0}(x) f(x)=0 \text { and } \\
a_{n}(x) g^{(n)}(x)+\cdots+a_{0}(x) g(x)=0
\end{array}
$$

Adding the two equations gives us

$$
a_{n}(x)(f+g)^{(n)}(x)+\cdots+a_{0}(x)(f+g)(x)=0
$$

so that $f+g$ is also a solution. Now, for a constant $m \in \mathbb{R}$, we have

$$
m a_{n}(x) f^{(n)}(x)+\cdots+m a_{0}(x) f(x)=0
$$

so that

$$
a_{n}(x)(m f)^{(n)}(x)+\cdots+m a_{0}(x)(m f)(x)=0
$$

Thus $m f$ is also a solution. So the set of solutions form a vector space of functions.
10. Find all constants A and B that make $y(x)=A \cos (x)+B \sin (x)$ a solution to (8) from Example 1.2.
Solution: Set $y(x)=A \cos (x)+B \sin (x)$. We get (for all x)

$$
\begin{aligned}
0=y^{\prime \prime} & +y^{\prime} & +2 y \\
=(-A \cos (x)-B \sin (x)) & +(-A \sin (x)+B \cos (x)) & +(2 A \cos (x)+2 B \sin (x)) \\
=(A+B) \cos (x)+(B-A) \sin (x) & &
\end{aligned}
$$

Since this must hold for $x=0$, we see that $(A+B) \cos (0)+(B-A) \sin (0)=A+B=0$. Since this must hold for $x=\pi / 2$, we see that $(A+B) \cos (\pi / 2)+(B-A) \sin (\pi / 2)=B-A=0$. Thus $A+B=0$ and $A-B=0$. Adding the equations gives $A=0$, subtracting them gives $B=0$. So we must have $y(x)=0 \cos (x)+0 \sin (x)=0$ is the only solution of that form. (That wasn't very interesting...)
11. Find all constants A and B that make $y(x)=A \cos (x)+B \sin (x)$ a solution to (9) from Example 1.2.

Solution: Set $y(x)=A \cos (x)+B \sin (x)$ and then

$$
\begin{array}{ll}
y^{(3)}(x)= & A \sin (x)-B \cos (x) \\
= & -y^{\prime}=
\end{array} A \sin (x)-B \cos (x) .
$$

Thus every pair of real numbers A and B yields a solution.
12. Find another solution to (9) from Example 1.2.

Hint: Think about one of the easiest functions you ever consider.
Solution: $y(x)=C$ works for any constant $C \in \mathbb{R}$.

