
INTRODUCTION TO DIFFERENTIAL EQUATIONS

MATH 186–1

1. Ordinary differential equations

We work with real numbers in this worksheet.

Definition 1.1. Fix x to be a variable, and y : [a, b]→ R to be an unknown function (of x).
An ordinary differential equation is an equation which relates derivatives of y with x and/or y

and/or other derivatives of y.

Example 1.2. The following are examples of differential equations.
(1) y′ = x2 + x
(2) y′ = 2x cos(x2)
(3) y′ = 0
(4) y′ = y
(5) y′ = xy
(6) y′ = x2y + y
(7) y′ = y + x+ 1
(8) y′′ + y′ + 2y = 0
(9) y(3) = −y′

Definition 1.3. The order of a differential equation is the degree of the highest derivative of y
that appears in the differential equation.

1. Find the orders of the differential equations from Example 1.2.

Solution: (1) = 1, (2) = 1, (3) = 1, (4) = 1, (5) = 1, (6) = 1, (7) = 1, (8) = 2, (9) = 3

Definition 1.4. To solve a differential, you need to find a function y that satisfies the equation.

2. Find all solutions to the differential equations (1), (2) and (3) from Example 1.2. Why can’t
we do something similar for the other examples?

Solution:
(1) y′ = x2 + x so y = 1

3x
3 + 1

2x
2 + C works for any constant C.

(2) y′ = 2x cos(x) so y = sin(x2) + C works for any constant C.
(3) y′ = 0 so y = C works for any constant C.
This doesn’t work for the other problems because they aren’t y′ = a function of x.
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We’ll discuss our first method for finding a solution to a differential equation.

Definition 1.5. A first order differential equation is called separable if it can be written in the
form y′ = f(y)g(x).

3. Which of the equations from Example 1.2 are separable?

Solution: Equations (1), (2), (3), (4), (5), (6) are all separable.

If a differential equation is separable, you can rewrite it in the form 1
f(y)y

′ = g(x) (at least as long
as f(y) is not zero). Define a new function H to be a antiderivative of 1

f(x) . Then (H(y))′ = 1
f(y)y

′

by the chain rule. If we further let G be any antiderivative of g(x), then we know that

(H(y))′ = G′(x)

and so H(y) = G(x) + C where C is some constant (remember, two differentiable functions with
the same derivative differ up to a constant).

Now you have an implicit equation relating y and x. You can hopefully solve for y.

Example 1.6. Consider the differential equation y′ = y2, it is separable with f(y) = y2 and
g(x) = 1. Write 1

y2 y
′ = 1. We want H(x) to be an anti-derivative of 1

x2 (we assume x 6= 0),
H(x) = −1

x certainly works. We set G(x) to be an anti-derivative of 1, G(x) = x works. Then we
know that H(y) = G(x) + C. Thus −1

y = x+ C and so y = −1
x+C .

To check our work, we plug this solution back into our original equation. y′ = y2. We get

y′(x) = (−1)
−1

(x+ C)2
=

1
(x+ C)2

=
(−1)2

(x+ C)2
= y2(x)

as desired.

4. Find a solution to each of the differential equations you said were separable (that you haven’t
already solved before). Check your solutions!

Solution: We need to solve (4), (5) and (6).

(4) y′ 1y = 1. So f(y) = 1
y . An antiderivative is H(y) = ln(y). G is an antiderivative of 1 so

G(x) = x works. Write ln(y) = x + C and so y = ex+C = kex (for some non-zero constant k, of
course, if k = 0 ,it’s easy to check that y = 0 is also a solution). To check our solution, notice that
y′ = (kex)′ = kex = y.

(5) y′ 1y = x. Just as in (4), H(y) = ln(y) but now G(x) = 1
2x

2. Set ln(y) = 1
2x

2 + C and so

y = e
1
2
x2+C = kex

2/2 for some constant k. To check our solution, notice that y′ = kex
2/2(x2/2)′ =

xkex
2/2 = xy as desired.

(6) y′ = (x2 + 1)y and thus y′ 1y = (x2 + 1). Again, H(y) = ln(y). Now, g(x) = x2 + 1 so

G(x) = 1
3x

3 + x. Thus ln(y) = 1
3x

3 + x + C and so (now skipping a step) y = ke
1
3
x3+x for some

constant k. To check our solution, notice that

y′ = ke
1
3
x3+x(

1
3
x3 + x)′ = ke

1
3
x3+x(x2 + 1) = x2y + y

as desired.



Another way to find solutions to differential equations is to find power series that solve the differ-
ential equations. For example, consider again the differential equation y′ = y. If we imagine that
y can be written as a power series

y(x) =
∞∑

n=0

anx
n,

then we know that
∞∑

n=0

anx
n =

∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

and so 1
(n+1)an = an+1 for every n. This is a recursive formula for the coefficients. In particular,

if we fix any a0, then

a1 = a0 a2 =
1
2
a1 =

1
2
a0

a3 =
1
3
a2 =

1
3!
a0 a4 =

1
4
a3 =

1
4!
a0

. . . an =
1
n!
a0

So a solution is y(x) =
∑∞

n=0 a0
1
n!x

n for any a0. (It is easy to check that this converges)
5. Show that the power series solution written above is the same solution as the one you found
when you did problem 4.

Solution: We only need to check (4) because that is the one that’s worked out above. For (4),
we found that y = kex is a solution (where k is an arbitrary constant). Above, we found that∑∞

n=0 a0
1
n!x

n is also a solution where a0 is an arbitrary constant, but
∞∑

n=0

a0
1
n!
xn = a0

∞∑
n=0

1
n!
xn = a0e

x.

So we simply can set k = a0 and note the solutions are the same.

6. Find a power series solution to (5) and (7) from Example 1.2. What are the radii over conver-
gence?

Solution: (5) y′ = xy. So suppose that
∑∞

n=0 anx
n is a solution. Then

y′ = a1x
0+ (2)a2x

1+ (3)a3x
2+ (4)a4x

3+ (5)a5x
4+ . . .

= xy = a0x
1+ a1x

2+ a2x
3+ a3x

4+ . . .

Thus a1 = 0, a0 is arbitrary, and in general, nan = an−2 for n ≥ 2. Therefore, an = 0 for n odd
since 3a3 = a1 = 0, and 5a5 = a3 = 0, etc. Furthermore

2a2 = a0 so a2 = 1
2a0

4a4 = a2 = 1
2a0 so a4 = 1

4
1
2a0

6a6 = a4 = 1
4

1
2a0 so a6 = 1

6
1
4

1
2a0

8a8 = a6 = 1
6

1
4

1
2a0 so a8 = 1

8
1
6

1
4

1
2a0

. . . . . .

And in general, a2n = 1
2n

1
2(n−1)

1
2(n−2) . . .

1
2a0 = 1

2nn!a0. Thus a0
∑∞

n=0
1

2nn!x
2n is a solution. One

can easily check using the ratio test that the radius of convergence is infinity.

Solution: (6) Suppose that y = a0 + a1x
1 + a2x

2 + a3x
3 + . . . is a solution. Then

y′ = a1x
0+ (2)a2x

1+ (3)a3x
2+ (4)a4x

3+ (5)a5x
4+ . . .

= y + x+ 1 = (a0 + 1)x0+ (a1 + 1)x1+ a2x
2+ a3x

3+ a4x
4+ . . .

So a1 = a0 + 1, thus a2 = 1
2(a1 + 1) = 1

2(a0 + 2) and further on an = 1
nan−1 = 1

n
1

(n−1) . . .
1
2(a0 + 2).

So the general solution is

y = a0x
0 + (a0 + 1)x1 +

1
2

(a0 + 2)x2 +
1
3!

(a0 + 2)x3 + · · ·+ 1
n!

(a0 + 2)xn + . . . .

The ratio test can again be used to verify that the radius of convergence is ∞.



Definition 1.7. A differential equation is called linear if it can be written in the following form.

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′(x) + a0(x)y(x) = r(x)

for some continuous functions ai(x) and r(x).

7. Which of the differential equations from Example 1.2 are linear?

Solution: They all are linear!

8. Write down a new example of a non-linear differential equation and then solve it
Hint: For an easy one, do something like Example 1.6.

Solution: y′ = −1
2 y

3 is such an example. It is non-linear because y appears to the third power.
However, it is still separable. Write −2

y3 y
′ = 1. Then H(y) = 1

y2 and G(x) = x. So 1
y2=x+C

. Thus
y = 1√

x+C
works as long as things make sense (ie, x + C is positive). To check our solution, we

notice that

y′ = (−1)
(

s1√
x+ C

)2

(1/2)
1√
x+ C

= (−1/2)
(

1√
x+ C

)3

=
−1
2
y3.

9. Prove that the set of solutions to a linear differential equation form a vector space of functions
under the assumption that r(x) is the zero function.

Solution: Suppose that f(x) and g(x) are solutions to a linear differential equation an(x)y(n) +
· · ·+ a0(x)y = 0. Then

an(x)f (n)(x) + · · ·+ a0(x)f(x) = 0 and

an(x)g(n)(x) + · · ·+ a0(x)g(x) = 0

Adding the two equations gives us

an(x)(f + g)(n)(x) + · · ·+ a0(x)(f + g)(x) = 0

so that f + g is also a solution. Now, for a constant m ∈ R, we have

man(x)f (n)(x) + · · ·+ma0(x)f(x) = 0

so that
an(x)(mf)(n)(x) + · · ·+ma0(x)(mf)(x) = 0

Thus mf is also a solution. So the set of solutions form a vector space of functions.



10. Find all constants A and B that make y(x) = A cos(x) + B sin(x) a solution to (8) from
Example 1.2.

Solution: Set y(x) = A cos(x) +B sin(x). We get (for all x)

0 = y′′ +y′ +2y
= (−A cos(x)−B sin(x)) +(−A sin(x) +B cos(x)) +(2A cos(x) + 2B sin(x))
= (A+B) cos(x) + (B −A) sin(x)

Since this must hold for x = 0, we see that (A + B) cos(0) + (B − A) sin(0) = A + B = 0. Since
this must hold for x = π/2, we see that (A + B) cos(π/2) + (B − A) sin(π/2) = B − A = 0. Thus
A + B = 0 and A − B = 0. Adding the equations gives A = 0, subtracting them gives B = 0. So
we must have y(x) = 0 cos(x) + 0 sin(x) = 0 is the only solution of that form. (That wasn’t very
interesting...)

11. Find all constants A and B that make y(x) = A cos(x) + B sin(x) a solution to (9) from
Example 1.2.

Solution: Set y(x) = A cos(x) +B sin(x) and then

y(3)(x) = A sin(x)−B cos(x)
= −y′ = A sin(x)−B cos(x)

Thus every pair of real numbers A and B yields a solution.

12. Find another solution to (9) from Example 1.2.
Hint: Think about one of the easiest functions you ever consider.

Solution: y(x) = C works for any constant C ∈ R.


