
WORKSHEET ON EIGENVALUES AND EIGENVECTORS

MATH 186–1

Definition 0.1. Suppose that T : Rn → Rn is a linear transformation.1 A non-zero vector v ∈ Rn

is called a eigenvector for T if there exists a number λ such that T (v) = λv. In this case, the
number λ is called an eigenvalue for T .

1. Fix {u,v} to be a basis for R2 and fix {x,y, z} to be a basis for R3. Given below are certain
vectors and various linear transformations. In each case determine which vectors are eigenvectors
and identify the associated eigenvalues.

(a) Set T : R2 → R2 to be the linear transformation represented by the matrix
[

2 0
0 3

]
. Try the

vectors, u,v,u + v, and u− v.

u is an eigenvector with associated eigenvalue 2. v is an eigenvector with associated eigenvalue 3.
The others are not eigenvectors.

(b) Set T : R2 → R2 to be the linear transformation represented by the matrix
[

0 1
1 0

]
. Try the

vectors u,v,u + v and u− v.

u + v is an eigenvector with associated eigenvalue 1. u − v is an eigenvector with associated
eigenvalue −1. The others are not eigenvectors.

(c) Set T : R2 → R2 to be the linear transformation represented by the matrix
[

0 1
2 1

]
. Try the

vectors u,v,u + v and u + 2v.

u + 2v is an eigenvector with associated eigenvalue 2. The others are not eigenvectors.

(d) Set T : R3 → R3 to be the linear transformation represented by the matrix

 a 0 0
0 a 0
0 0 b

 where

a, b are all distinct constants. Try the vectors x,y, z,x + y, 3x− 7y and x + y + z.

x,y,x + y, 3x − 7y are all eigenvectors associated with the eigenvalue a. z is an eigenvector
with associated eigenvalue b. x + y + z is not an eigenvector.

1We will mostly be concerned with the case that n = 2
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We’ll now begin to develop a better method for identifying eigenvalues and eigenvectors than
what we did on the previous page (guess and check). First fix some notation. We will use the
letter I to denote the identity linear transformation. That is I : R2 → R2 is the map defined by
the formula I(w) = w for all w ∈ R2.
2. Suppose that T : R2 → R2 is a linear transformation. Let’s suppose that a vector w is an
eigenvector for T with associated eigenvalue λ. Prove that the new linear transformation (λ · I−T )
is not injective. Here (λ · I−T ) is defined by the rule (λ · I−T )(x) = T (x)−λ · I(x) for all x ∈ R2.

I’m going to assume that w is a non-zero vector. Eigenvectors are always assumed to be non-
zero (I should have said this more clearly on the first page). Then

(λ · I − T )(w) = λw − T (w) = λw − λw = 0.

But (λ ·I−T )(0) = 0 also so (λ ·I−T ) sends two different vectors to zero and so it is not injective.

3. With notation as in problem #2, fix a basis {u,v} for R2. Assume that T is represented by

the matrix
[
e f
g h

]
, write down a matrix representation of (λ · I − T ). Finally write down the

determinant of this matrix you constructed (note that this determinant is a polynomial in the
variable λ, it is called the characteristic polynomial of the matrix ).

The matrix representation of (λ · I − T ) is
[
λ− e −f
−g λ− h

]
. The determinant is

(λ− e)(λ− h) + fg

Remark 0.2. One can do something similar for 3×3 matrices. In particular, there is a determinant
of such matrices and you can construct the characteristic polynomial in the same way. Versions of
the results on the following pages also hold for 3× 3 matrices.



4. Suppose that k is a real number. Show that that k is a root of the polynomial from problem 3.
if and only if k is an eigenvalue for T .
Hint: In the homework you turned in yesterday, you showed that a if T was represented by a matrix[
a b
c d

]
, then T is injective if and only if ad− bc 6= 0.

Fix a basis u,v ∈ R2 and fix a linear transformation T : R2 → R2 represented by the matrix[
e f
g h

]
just as in the previous problem.

Suppose first that k is a root of the characteristic polynomial of this matrix. Then det(k·I−T ) = 0
and in particular, (k · I − T ) is not injective. But then there exists a non-zero w such that
(kİ − T )(w) = 0 or in other words kw = kİ(w) = T (w) which proves that w is an eigenvector
with associated eigenvalue k.

Conversely, suppose that k is an eigenvalue for the matrix
[
e f
g h

]
. Then it has an associated

nonzero eigenvector w. Thus kw = T (w) and it follows (reversing the steps from above) that
(kİ − T )(w) = 0. But then det(kİ − T ) = (k − e)(k − h) + fg = 0. Thus k is a root of the
polynomial (λ− e)(λ− h) + fg.

5. Compute the eigenvalues of the linear transformations from problem #1(a),(b),(c). What’s
stopping you from computing the eigenvalues for the linear transformation corresponding to the

matrix
[

0 1
−1 0

]
? (Geometrically, remind yourself what this linear transformation does).

(a) The characteristic polynomial is (λ− 2)(λ− 3) and so the roots (and thus eigenvalues) are
2 and 3.

(b) The characteristic polynomial is λ2 − 1 and so the roots (and thus eigenvalues) are −1 and
1.

(c) The characteristic polynomial is λ(λ − 1) − 2 = λ2 − λ − 2 and so the roots (and thus
eigenvalues) are 2 and −1.

(d) The characteristic polynomial is λ2 + 1. Thus polynomial doesn’t have any roots! Geomet-
rically, it corresponds to rotation by 90 degrees (and so geometrically, one would not expect
any eigenvectors either).



6. Can a linear transformation T : R2 → R2 have more than 2 distinct eigenvalues? Justify your
answer.

No, the eigenvalues of T are always the roots of a polynomial equation of degree 2. Such equations
can have at most 2 roots (although sometimes they can also have 1 root or zero roots).

7. Suppose that T : R2 → R2 is a non-surjective linear transformation. Prove that λ = 0 is an
eigenvalue for T .

Since T is non-surjective, it is non-injective. Thus T (w) = T (w′) for two distinct vectors w
and w′. Then T (w −w′) = T (w) − T (w′) = 0 = 0(w −w′). In particular, 0 is an eigenvalue for
the eigenvector w −w′.

8. Suppose that T : R2 → R2 is a linear transformation. Further suppose that x,y ∈ R2 are linearly
independent eigenvectors of T but they have the same eigenvalue λ. Show that every vector in R2

is an eigenvector of T (associated to the same eigenvalue) and also that the characteristic poly-
nomial of the matrix associated to T has a double-root at λ. What would it mean about T if λ = 0?

Fix any vector w ∈ R2. Since x,y are linearly independent, they are a basis and so we can
write w = ax + by. But then

T (w) = T (ax + by) = aT (x) + bT (y) = aλx + bλy = λ(ax + by) = λw

as desired.
Now we show that the characteristic polynomial has a double root. We know that it has one

root λ and so if we write the characteristic polynomial z2 +dz+ e with the variable z (other letters
already seem to be used), then (z − λ)(z−???) = z2 + dz + e using polynomial long division. Let
us use the variable γ instead of ???. Then γ must be an eigenvalue with associated eigenvector
w′ 6= 0. But w′ ∈ R2 so w′ is also an eigenvector associated to λ. In other words

λw′ = T (w′) = γw′.

This implies that γ = λ.
Finally if λ = 0, then for any w = R2, T (w) = 0w = 0. In particular, T is the linear

transformation that sends all vectors to 0. It is represented by the matrix
[

0 0
0 0

]
no matter

what basis you use.



Now we turn to the question of finding the eigenvectors associated to a given eigenvalue. Suppose

that T : R2 → R2 is a linear transformation represented by a matrix
[
e f
g h

]
and that λ is an

eigenvalue. To find the eigenvectors associated to λ, write[
e f
g h

] [
x
y

]
= λ

[
x
y

]
.

Now expand the left side of the equation and obtain equations (viewing x and y as variables). Find
any pair of x and y that satisfy those equations and you have found an eigenvector. Let us do an
explicit example:

Example 0.3. Suppose we are given the matrix A =
[

1 2
4 3

]
. By the method described above,

one can verify that the number 5 is an eigenvalue of the linear transformation associated to A. So
we write [

1 2
4 3

] [
x
y

]
= 5

[
x
y

]
.

The right side of the equation is just
[

5x
5y

]
and the left side is

[
x+ 2y
4x+ 3y

]
. So we have the

equations
x+ 2y = 5x

5y = 4x+ 3y

Which reduces (in either case) to y = 2x. Thus
[

1
2

]
is an eigenvector (as is

[
−7
−14

]
).

9. Using this method, find the eigenvectors associated to the matrices from problem #1(a)(b)(c).

Also, find the eigenvalues and eigenvectors associated to
[

1 2
3 4

]
. This last one is fairly messy.

(a) All scalar multiples of u =
[

1
0

]
are the eigenvectors for the eigenvalue 2. All scalar

multiples of v =
[

0
1

]
are the eigenvectors for the eigenvalue 3.

(b) All scalar multiples of u + v =
[

1
1

]
are the eigenvectors for the eigenvalue 1. All scalar

multiples of u− v =
[

1
−1

]
are the eigenvectors for the eigenvalue −1.

(c) All scalar multiples of u + 2v =
[

1
2

]
are the eigenvectors for the eigenvalue 2. All scalar

multiples of −u + v =
[
−1
1

]
are the eigenvectors for the eigenvalue −1.

(d) All scalar multiples of u + 3+
√

33
4 v =

[
1(

3+
√

33
4

) ] are the eigenvectors for the eigenvalue

5+
√

33
2 . All scalar multiples of u + 3−

√
33

4 v =

[
1(

3−
√

33
4

) ] are the eigenvectors for the

eigenvalue 5−
√

33
2 .


