WORKSHEET ON EIGENVALUES AND EIGENVECTORS

Definition 0.1. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation. ${ }^{1}$ A non-zero vector $\mathbf{v} \in \mathbb{R}^{n}$ is called a eigenvector for T if there exists a number λ such that $T(\mathbf{v})=\lambda \mathbf{v}$. In this case, the number λ is called an eigenvalue for T.

1. Fix $\{\mathbf{u}, \mathbf{v}\}$ to be a basis for \mathbb{R}^{2} and fix $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ to be a basis for \mathbb{R}^{3}. Given below are certain vectors and various linear transformations. In each case determine which vectors are eigenvectors and identify the associated eigenvalues.
(a) Set $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be the linear transformation represented by the matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$. Try the vectors, $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$, and $\mathbf{u}-\mathbf{v}$.
\mathbf{u} is an eigenvector with associated eigenvalue $2 . \mathbf{v}$ is an eigenvector with associated eigenvalue 3 . The others are not eigenvectors.
(b) Set $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be the linear transformation represented by the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Try the vectors $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$.
$\mathbf{u}+\mathbf{v}$ is an eigenvector with associated eigenvalue $1 . \mathbf{u}-\mathbf{v}$ is an eigenvector with associated eigenvalue -1 . The others are not eigenvectors.
(c) Set $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be the linear transformation represented by the matrix $\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$. Try the vectors $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$ and $\mathbf{u}+2 \mathbf{v}$.
$\mathbf{u}+2 \mathbf{v}$ is an eigenvector with associated eigenvalue 2 . The others are not eigenvectors.
(d) Set $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ to be the linear transformation represented by the matrix $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right]$ where a, b are all distinct constants. Try the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x}+\mathbf{y}, 3 \mathbf{x}-7 \mathbf{y}$ and $\mathbf{x}+\mathbf{y}+\mathbf{z}$.
$\mathbf{x}, \mathbf{y}, \mathbf{x}+\mathbf{y}, 3 \mathbf{x}-7 \mathbf{y}$ are all eigenvectors associated with the eigenvalue $a . \mathbf{z}$ is an eigenvector with associated eigenvalue $b . \mathbf{x}+\mathbf{y}+\mathbf{z}$ is not an eigenvector.
[^0]We'll now begin to develop a better method for identifying eigenvalues and eigenvectors than what we did on the previous page (guess and check). First fix some notation. We will use the letter I to denote the identity linear transformation. That is $I: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the map defined by the formula $I(\mathbf{w})=\mathbf{w}$ for all $\mathbf{w} \in \mathbb{R}^{2}$.
2. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation. Let's suppose that a vector \mathbf{w} is an eigenvector for T with associated eigenvalue λ. Prove that the new linear transformation $(\lambda \cdot I-T)$ is not injective. Here $(\lambda \cdot I-T)$ is defined by the rule $(\lambda \cdot I-T)(\mathbf{x})=T(\mathbf{x})-\lambda \cdot I(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{2}$.

I'm going to assume that \mathbf{w} is a non-zero vector. Eigenvectors are always assumed to be nonzero (I should have said this more clearly on the first page). Then

$$
(\lambda \cdot I-T)(\mathbf{w})=\lambda \mathbf{w}-T(\mathbf{w})=\lambda \mathbf{w}-\lambda \mathbf{w}=\mathbf{0}
$$

But $(\lambda \cdot I-T)(\mathbf{0})=\mathbf{0}$ also so $(\lambda \cdot I-T)$ sends two different vectors to zero and so it is not injective.
3. With notation as in problem $\# 2$, fix a basis $\{\mathbf{u}, \mathbf{v}\}$ for \mathbb{R}^{2}. Assume that T is represented by the matrix $\left[\begin{array}{cc}e & f \\ g & h\end{array}\right]$, write down a matrix representation of $(\lambda \cdot I-T)$. Finally write down the determinant of this matrix you constructed (note that this determinant is a polynomial in the variable λ, it is called the characteristic polynomial of the matrix).

The matrix representation of $(\lambda \cdot I-T)$ is $\left[\begin{array}{cc}\lambda-e & -f \\ -g & \lambda-h\end{array}\right]$. The determinant is

$$
(\lambda-e)(\lambda-h)+f g
$$

Remark 0.2 . One can do something similar for 3×3 matrices. In particular, there is a determinant of such matrices and you can construct the characteristic polynomial in the same way. Versions of the results on the following pages also hold for 3×3 matrices.
4. Suppose that k is a real number. Show that that k is a root of the polynomial from problem 3. if and only if k is an eigenvalue for T.
Hint: In the homework you turned in yesterday, you showed that a if T was represented by a matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then T is injective if and only if $a d-b c \neq 0$.
Fix a basis $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ and fix a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ represented by the matrix $\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ just as in the previous problem.

Suppose first that k is a root of the characteristic polynomial of this matrix. Then $\operatorname{det}(k \cdot I-T)=0$ and in particular, $(k \cdot I-T)$ is not injective. But then there exists a non-zero \mathbf{w} such that $(k \dot{I}-T)(\mathbf{w})=\mathbf{0}$ or in other words $k \mathbf{w}=k \dot{I}(\mathbf{w})=T(\mathbf{w})$ which proves that \mathbf{w} is an eigenvector with associated eigenvalue k.

Conversely, suppose that k is an eigenvalue for the matrix $\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$. Then it has an associated nonzero eigenvector \mathbf{w}. Thus $k \mathbf{w}=T(\mathbf{w})$ and it follows (reversing the steps from above) that $(k \dot{I}-T)(\mathbf{w})=\mathbf{0}$. But then $\operatorname{det}(k \dot{I}-T)=(k-e)(k-h)+f g=0$. Thus k is a root of the polynomial $(\lambda-e)(\lambda-h)+f g$.
5. Compute the eigenvalues of the linear transformations from problem \#1(a),(b),(c). What's stopping you from computing the eigenvalues for the linear transformation corresponding to the matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$? (Geometrically, remind yourself what this linear transformation does).
(a) The characteristic polynomial is $(\lambda-2)(\lambda-3)$ and so the roots (and thus eigenvalues) are 2 and 3.
(b) The characteristic polynomial is $\lambda^{2}-1$ and so the roots (and thus eigenvalues) are -1 and 1.
(c) The characteristic polynomial is $\lambda(\lambda-1)-2=\lambda^{2}-\lambda-2$ and so the roots (and thus eigenvalues) are 2 and -1 .
(d) The characteristic polynomial is $\lambda^{2}+1$. Thus polynomial doesn't have any roots! Geometrically, it corresponds to rotation by 90 degrees (and so geometrically, one would not expect any eigenvectors either).
6. Can a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ have more than 2 distinct eigenvalues? Justify your answer.

No, the eigenvalues of T are always the roots of a polynomial equation of degree 2 . Such equations can have at most 2 roots (although sometimes they can also have 1 root or zero roots).
7. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a non-surjective linear transformation. Prove that $\lambda=0$ is an eigenvalue for T.

Since T is non-surjective, it is non-injective. Thus $T(\mathbf{w})=T\left(\mathbf{w}^{\prime}\right)$ for two distinct vectors \mathbf{w} and \mathbf{w}^{\prime}. Then $T\left(\mathbf{w}-\mathbf{w}^{\prime}\right)=T(\mathbf{w})-T\left(\mathbf{w}^{\prime}\right)=\mathbf{0}=0\left(\mathbf{w}-\mathbf{w}^{\prime}\right)$. In particular, 0 is an eigenvalue for the eigenvector $\mathbf{w}-\mathbf{w}^{\prime}$.
8. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation. Further suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ are linearly independent eigenvectors of T but they have the same eigenvalue λ. Show that every vector in \mathbb{R}^{2} is an eigenvector of T (associated to the same eigenvalue) and also that the characteristic polynomial of the matrix associated to T has a double-root at λ. What would it mean about T if $\lambda=0$?

Fix any vector $\mathbf{w} \in \mathbb{R}^{2}$. Since \mathbf{x}, \mathbf{y} are linearly independent, they are a basis and so we can write $\mathbf{w}=a \mathbf{x}+b \mathbf{y}$. But then

$$
T(\mathbf{w})=T(a \mathbf{x}+b \mathbf{y})=a T(\mathbf{x})+b T(\mathbf{y})=a \lambda \mathbf{x}+b \lambda \mathbf{y}=\lambda(a \mathbf{x}+b \mathbf{y})=\lambda \mathbf{w}
$$

as desired.
Now we show that the characteristic polynomial has a double root. We know that it has one root λ and so if we write the characteristic polynomial $z^{2}+d z+e$ with the variable z (other letters already seem to be used), then $(z-\lambda)(z-? ? ?)=z^{2}+d z+e$ using polynomial long division. Let us use the variable γ instead of ???. Then γ must be an eigenvalue with associated eigenvector $\mathbf{w}^{\prime} \neq \mathbf{0}$. But $\mathbf{w}^{\prime} \in \mathbb{R}^{2}$ so \mathbf{w}^{\prime} is also an eigenvector associated to λ. In other words

$$
\lambda \mathbf{w}^{\prime}=T\left(\mathbf{w}^{\prime}\right)=\gamma \mathbf{w}^{\prime}
$$

This implies that $\gamma=\lambda$.
Finally if $\lambda=0$, then for any $\mathbf{w}=\mathbb{R}^{2}, T(\mathbf{w})=0 \mathbf{w}=\mathbf{0}$. In particular, T is the linear transformation that sends all vectors to $\mathbf{0}$. It is represented by the matrix $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ no matter what basis you use.

Now we turn to the question of finding the eigenvectors associated to a given eigenvalue. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation represented by a matrix $\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ and that λ is an eigenvalue. To find the eigenvectors associated to λ, write

$$
\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Now expand the left side of the equation and obtain equations (viewing x and y as variables). Find any pair of x and y that satisfy those equations and you have found an eigenvector. Let us do an explicit example:
Example 0.3. Suppose we are given the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$. By the method described above, one can verify that the number 5 is an eigenvalue of the linear transformation associated to A. So we write

$$
\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=5\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

The right side of the equation is just $\left[\begin{array}{c}5 x \\ 5 y\end{array}\right]$ and the left side is $\left[\begin{array}{c}x+2 y \\ 4 x+3 y\end{array}\right]$. So we have the equations

$$
\begin{array}{r}
x+2 y=5 x \\
5 y=4 x+3 y
\end{array}
$$

Which reduces (in either case) to $y=2 x$. Thus $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector (as is $\left[\begin{array}{c}-7 \\ -14\end{array}\right]$).
9. Using this method, find the eigenvectors associated to the matrices from problem $\# 1$ (a)(b)(c). Also, find the eigenvalues and eigenvectors associated to $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. This last one is fairly messy.
(a) All scalar multiples of $\mathbf{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ are the eigenvectors for the eigenvalue 2. All scalar multiples of $\mathbf{v}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are the eigenvectors for the eigenvalue 3 .
(b) All scalar multiples of $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are the eigenvectors for the eigenvalue 1. All scalar multiples of $\mathbf{u}-\mathbf{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are the eigenvectors for the eigenvalue -1 .
(c) All scalar multiples of $\mathbf{u}+2 \mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ are the eigenvectors for the eigenvalue 2. All scalar multiples of $-\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are the eigenvectors for the eigenvalue -1 .
(d) All scalar multiples of $\mathbf{u}+\frac{3+\sqrt{33}}{4} \mathbf{v}=\left[\begin{array}{c}1 \\ \left(\frac{3+\sqrt{33}}{4}\right)\end{array}\right]$ are the eigenvectors for the eigenvalue $\frac{5+\sqrt{33}}{2}$. All scalar multiples of $\mathbf{u}+\frac{3-\sqrt{33}}{4} \mathbf{v}=\left[\begin{array}{c}1 \\ \left(\frac{3-\sqrt{33}}{4}\right)\end{array}\right]$ are the eigenvectors for the eigenvalue $\frac{5-\sqrt{33}}{2}$.

[^0]: ${ }^{1}$ We will mostly be concerned with the case that $n=2$

